Show simple item record

Modeling and Correcting Cure‐Through in Continuous Stereolithographic 3D Printing

dc.contributor.authorPritchard, Zachary D.
dc.contributor.authorBeer, Martin P.
dc.contributor.authorWhelan, Riley J.
dc.contributor.authorScott, Timothy F.
dc.contributor.authorBurns, Mark A.
dc.date.accessioned2020-01-13T15:10:53Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-01-13T15:10:53Z
dc.date.issued2019-12
dc.identifier.citationPritchard, Zachary D.; Beer, Martin P.; Whelan, Riley J.; Scott, Timothy F.; Burns, Mark A. (2019). "Modeling and Correcting Cure‐Through in Continuous Stereolithographic 3D Printing." Advanced Materials Technologies 4(12): n/a-n/a.
dc.identifier.issn2365-709X
dc.identifier.issn2365-709X
dc.identifier.urihttps://hdl.handle.net/2027.42/152825
dc.description.abstractContinuous stereolithography offers significant speed improvements over traditional layer‐by‐layer approaches but is more susceptible to cure‐through, undesired curing along the axis of exposure. Typically, cure‐through is mitigated at the cost of print speed by reducing penetration depth in the photopolymer resin via the addition of nonreactive light absorbers. Here, a mathematical approach is presented to model the dose profile in a part produced using continuous stereolithography. From this model, a correction method is developed to modify the projected images and produce a chosen dose profile, thereby reducing cure‐through while maintaining print speed. The method is verified experimentally on a continuous stereolithographic 3D printer, and the practicality of various dose profiles is investigated. In optimizing the critical dose parameter, the measured gelation dose Dgel is found to be insufficient for accurate reproduction of features, and an optimal value of Dc = 5Dgel is chosen for the test resin. Using optimized parameters with a high‐absorbance height resin (ha = 2000 µm), feature height errors are reduced by over 85% in a test model while maintaining a high print speed (s = 750 mm h−1).A model for optical dose in continuous stereolithography is developed and used to improve dimensional accuracy for high‐speed, low‐absorbance resins, which are susceptible to additional curing on the surface of designed features. By modifying the projected images, a prescribed dose profile can be applied throughout the printed part. Print fidelity is improved while maintaining high fabrication rates.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstereolithography
dc.subject.otherphotopolymers
dc.subject.otheradditive manufacturing
dc.subject.other3d printing
dc.titleModeling and Correcting Cure‐Through in Continuous Stereolithographic 3D Printing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152825/1/admt201900700-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152825/2/admt201900700.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/152825/3/admt201900700_am.pdf
dc.identifier.doi10.1002/admt.201900700
dc.identifier.sourceAdvanced Materials Technologies
dc.identifier.citedreferenceA. S. Limaye, D. W. Rosen, Rapid Prototyping J. 2007, 13, 76.
dc.identifier.citedreferenceW. Yang, J. Yang, J. J. Byun, F. P. Moissinac, J. Xu, S. J. Haigh, M. Domingos, M. A. Bissett, R. A. W. Dryfe, S. Barg, Adv. Mater. 2019, 31, 1902725.
dc.identifier.citedreferenceN. Kleger, M. Cihova, K. Masania, A. R. Studart, J. F. Löffler, Adv. Mater. 2019, 31, 1903783.
dc.identifier.citedreferenceM. Ratto, R. Ree, First Monday 2012, 17, https://doi.org/10.5210/fm.v17i7.3968.
dc.identifier.citedreferenceJ. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone, Science 2015, 347, 1349.
dc.identifier.citedreferenceM. P. de Beer, H. L. van der Laan, M. A. Cole, R. J. Whelan, M. A. Burns, T. F. Scott, Sci. Adv. 2019, 5, eaau8723.
dc.identifier.citedreferenceJ. Choi, R. B. Wicker, S.‐H. Cho, C.‐S. Ha, S. Lee, Rapid Prototyping J. 2009, 15, 59.
dc.identifier.citedreferenceP. F. O’Neill, N. Kent, D. Brabazon, AIP Conf. Proc. 2017, 1896, 200012.
dc.identifier.citedreferenceA. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, M. C. Breadmore, Anal. Chem. 2014, 86, 3124.
dc.identifier.citedreferenceA. S. Limaye, D. W. Rosen, Rapid Prototyping J. 2006, 12, 283.
dc.identifier.citedreferenceH. Gong, M. Beauchamp, S. Perry, A. T. Woolley, G. P. Nordin, RSC Adv. 2015, 5, 3627.
dc.identifier.citedreferenceS. Zissi, A. Bertsch, J. Y. Jézéquel, S. Corbel, D. J. Lougnot, J. C. André, Microsyst. Technol. 1995, 2, 97.
dc.identifier.citedreferenceC. Sun, X. Zhang, J. Appl. Phys. 2002, 92, 4796.
dc.identifier.citedreferenceH. Gong, B. P. Bickham, A. T. Woolley, G. P. Nordin, Lab Chip 2017, 17, 2899.
dc.identifier.citedreferenceM. J. Männel, L. Selzer, R. Bernhardt, J. Thiele, Adv. Mater. Technol. 2019, 4, 1800408.
dc.identifier.citedreferenceD. Dendukuri, P. Panda, R. Haghgooie, J. M. Kim, T. A. Hatton, P. S. Doyle, Macromolecules 2008, 41, 8547.
dc.identifier.citedreferenceZ. Wang, H. Liang, A. V. Dobrynin, Macromolecules 2017, 50, 7794.
dc.identifier.citedreferenceS. Sarkar, S. Lin‐Gibson, Adv. Theory Simul. 2018, 1, 1800028.
dc.identifier.citedreferenceC. Zhou, Y. Chen, R. A. Waltz, J. Manuf. Sci. Eng. 2009, 131, 061004.
dc.identifier.citedreferenceCreative Tools Sweden AB, “#3DBenchy – The jolly 3D printing torture‐test,” http://www.3dbenchy.com/, n.d.
dc.identifier.citedreferenceA. Nosek, “Easter Eggs by Antonin_Nosek – Thingiverse,” https://www.thingiverse.com/thing:2829553, n.d.
dc.identifier.citedreferenceB. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, Science 2019, 363, 1075.
dc.identifier.citedreferenceG. I. Peterson, J. J. Schwartz, D. Zhang, B. M. Weiss, M. A. Ganter, D. W. Storti, A. J. Boydston, ACS Appl. Mater. Interfaces 2016, 8, 29037.
dc.identifier.citedreferenceT. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. Hui, Composites, Part B 2018, 143, 172.
dc.identifier.citedreferenceO. Oderinde, F. Yao, H. Imtiaz, K. Li, M. Kang, G. Fu, S. Liu, Polym. Adv. Technol. 2018, 29, 1586.
dc.identifier.citedreferenceR. D. Pedde, B. Mirani, A. Navaei, T. Styan, S. Wong, M. Mehrali, A. Thakur, N. K. Mohtaram, A. Bayati, A. Dolatshahi‐Pirouz, M. Nikkhah, S. M. Willerth, M. Akbari, Adv. Mater. 2017, 29, 1606061.
dc.identifier.citedreferenceA. K. Gaharwar, L. M. Cross, C. W. Peak, K. Gold, J. K. Carrow, A. Brokesh, K. A. Singh, Adv. Mater. 2019, 31, 1900332.
dc.identifier.citedreferenceK. Kim, B. Kim, C. H. Lee, Adv. Mater. 2019, https://doi.org/10.1002/adma.201902051.
dc.identifier.citedreferenceP. Cai, Z. Li, E. S. Keneth, L. Wang, C. Wan, Y. Jiang, B. Hu, Y. Wu, S. Wang, C. T. Lim, E. V. Makeyev, S. Magdassi, X. Chen, Adv. Mater. 2019, 31, 1900514.
dc.identifier.citedreferenceD. Shahriari, G. Loke, I. Tafel, S. Park, P. Chiang, Y. Fink, P. Anikeeva, Adv. Mater. 2019, 31, 1902021.
dc.identifier.citedreferenceY. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Adv. Mater. 2018, 30, 1706539.
dc.identifier.citedreferenceA. Velasco‐Hogan, J. Xu, M. A. Meyers, Adv. Mater. 2018, 30, 1800940.
dc.identifier.citedreferenceG. Etienne, I. L. H. Ong, E. Amstad, Adv. Mater. 2019, 31, 1808233.
dc.identifier.citedreferenceR. D. Farahani, M. Dubé, D. Therriault, Adv. Mater. 2016, 28, 5794.
dc.identifier.citedreferenceL. Hirt, A. Reiser, R. Spolenak, T. Zambelli, Adv. Mater. 2017, 29, 1604211.
dc.identifier.citedreferenceD. Cao, Y. Xing, K. Tantratian, X. Wang, Y. Ma, A. Mukhopadhyay, Z. Cheng, Q. Zhang, Y. Jiao, L. Chen, H. Zhu, Adv. Mater. 2019, 31, 1807313.
dc.identifier.citedreferenceH. Wang, J. Shen, D. J. Kline, N. Eckman, N. R. Agrawal, T. Wu, P. Wang, M. R. Zachariah, Adv. Mater. 2019, 31, 1806575.
dc.identifier.citedreferenceD. W. Yee, M. L. Lifson, B. W. Edwards, J. R. Greer, Adv. Mater. 2019, 31, 1901345.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.