Show simple item record

Dopant Segregation Boosting High‐Voltage Cyclability of Layered Cathode for Sodium Ion Batteries

dc.contributor.authorWang, Kuan
dc.contributor.authorWan, Hui
dc.contributor.authorYan, Pengfei
dc.contributor.authorChen, Xiao
dc.contributor.authorFu, Junjie
dc.contributor.authorLiu, Zhixiao
dc.contributor.authorDeng, Huiqiu
dc.contributor.authorGao, Fei
dc.contributor.authorSui, Manling
dc.date.accessioned2020-01-13T15:17:21Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-01-13T15:17:21Z
dc.date.issued2019-11
dc.identifier.citationWang, Kuan; Wan, Hui; Yan, Pengfei; Chen, Xiao; Fu, Junjie; Liu, Zhixiao; Deng, Huiqiu; Gao, Fei; Sui, Manling (2019). "Dopant Segregation Boosting High‐Voltage Cyclability of Layered Cathode for Sodium Ion Batteries." Advanced Materials 31(46): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/153093
dc.description.abstractAs a widely used approach to modify a material’s bulk properties, doping can effectively improve electrochemical properties and structural stability of various cathodes for rechargeable batteries, which usually empirically favors a uniform distribution of dopants. It is reported that dopant aggregation effectively boosts the cyclability of a Mg‐doped P2‐type layered cathode (Na0.67Ni0.33Mn0.67O2). Experimental characterization and calculation consistently reveal that randomly distributed Mg dopants tend to segregate into the Na‐layer during high‐voltage cycling, leading to the formation of high‐density precipitates. Intriguingly, such Mg‐enriched precipitates, acting as 3D network pillars, can further enhance a material’s mechanical strength, suppress cracking, and consequently benefit cyclability. This work not only deepens the understanding on dopant evolution but also offers a conceptually new approach by utilizing precipitation strengthening design to counter cracking related degradation and improve high‐voltage cyclability of layered cathodes.Improved cyclability of Mg‐doped P2‐NMM layered cathode is mainly due to suppression of cracking. Randomly distributed Mg dopants tend to segregate into precipitates during high‐voltage cycling, which can further strengthen the layered cathode and suppress cracking, leading to superior cycling stability at elevated voltage. Dopant precipitate is a new design concept to improve layered cathode cyclability.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTEM
dc.subject.otherdoping
dc.subject.otherlayered cathodes
dc.subject.otherprecipitation strengthening
dc.titleDopant Segregation Boosting High‐Voltage Cyclability of Layered Cathode for Sodium Ion Batteries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153093/1/adma201904816.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153093/2/adma201904816-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153093/3/adma201904816_am.pdf
dc.identifier.doi10.1002/adma.201904816
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceP. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, Angew. Chem., Int. Ed. 2016, 55, 7445.
dc.identifier.citedreferenceG. G. Amatucci, J. M. Tarascon, L. C. Klein, Solid State Ionics 1996, 83, 167.
dc.identifier.citedreferenceK. Xu, Chem. Rev. 2014, 114, 11503.
dc.identifier.citedreferenceK. Xu, Chem. Rev. 2004, 104, 4303.
dc.identifier.citedreferenceK. Wang, P. Yan, M. Sui, Nano Energy 2018, 54, 148.
dc.identifier.citedreferenceP. Yan, J. Zheng, T. Chen, L. Luo, Y. Jiang, K. Wang, M. Sui, J.‐G. Zhang, S. Zhang, C. Wang, Nat. Commun. 2018, 9, 2437.
dc.identifier.citedreferenceP. Yan, J. Zheng, M. Gu, J. Xiao, J. G. Zhang, C. M. Wang, Nat. Commun. 2017, 8, 14101.
dc.identifier.citedreferenceR. Xu, L. S. de Vasconcelos, J. Shi, J. Li, K. Zhao, Exp. Mech. 2018, 58, 549.
dc.identifier.citedreferenceZ. Xu, M. M. Rahman, L. Mu, Y. Liu, F. Lin, J. Mater. Chem. A 2018, 6, 21859.
dc.identifier.citedreferenceJ. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt‐Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269.
dc.identifier.citedreferenceH.‐H. Ryu, K.‐J. Park, C. S. Yoon, Y.‐K. Sun, Chem. Mater. 2018, 30, 1155.
dc.identifier.citedreferenceT. Joshi, K. Eom, G. Yushin, T. F. Fuller, J. Electrochem. Soc. 2014, 161, A1915.
dc.identifier.citedreferenceQ. Xie, W. Li, A. Manthiram, Chem. Mater. 2019, 31, 938.
dc.identifier.citedreferenceG. Singh, N. Tapia‐Ruiz, J. M. Lopez del Amo, U. Maitra, J. W. Somerville, A. R. Armstrong, J. Martinez de Ilarduya, T. Rojo, P. G. Bruce, Chem. Mater. 2016, 28, 5087.
dc.identifier.citedreferenceX. Rong, E. Hu, Y. Lu, F. Meng, C. Zhao, X. Wang, Q. Zhang, X. Yu, L. Gu, Y.‐S. Hu, H. Li, X. Huang, X.‐Q. Yang, C. Delmas, L. Chen, Joule 2018, 3, 1.
dc.identifier.citedreferenceQ. Liu, X. Su, D. Lei, Y. Qin, J. Wen, F. Guo, Y. A. Wu, Y. Rong, R. Kou, X. Xiao, F. Aguesse, J. Bareño, Y. Ren, W. Lu, Y. Li, Nat. Energy 2018, 3, 936.
dc.identifier.citedreferenceQ. C. Wang, J. K. Meng, X. Y. Yue, Q. Q. Qiu, Y. Song, X. J. Wu, Z. W. Fu, Y. Y. Xia, Z. Shadike, J. Wu, X. Q. Yang, Y. N. Zhou, J. Am. Chem. Soc. 2019, 141, 840.
dc.identifier.citedreferenceK. Zhang, D. Kim, Z. Hu, M. Park, G. Noh, Y. Yang, J. Zhang, V. W. Lau, S. L. Chou, M. Cho, S. Y. Choi, Y. M. Kang, Nat. Commun. 2019, 10, 5203.
dc.identifier.citedreferenceJ. Billaud, G. Singh, A. R. Armstrong, E. Gonzalo, V. Roddatis, M. Armand, T. Rojo, P. G. Bruce, Energy Environ. Sci. 2014, 7, 1387.
dc.identifier.citedreferenceB. Li, E. Ma, Phys. Rev. Lett. 2009, 103, 035503.
dc.identifier.citedreferenceA. Nie, Y. Cheng, Y. Zhu, H. Asayesh‐Ardakani, R. Tao, F. Mashayek, Y. Han, U. Schwingenschlogl, R. F. Klie, S. Vaddiraju, R. Shahbazian‐Yassar, Nano Lett. 2014, 14, 5301.
dc.identifier.citedreferenceZ. Liu, H. Deng, P. P. Mukherjee, ACS Appl. Mater. Interfaces 2015, 7, 4000.
dc.identifier.citedreferenceP. Yan, J. Zheng, Z.‐K. Tang, A. Devaraj, G. Chen, K. Amine, J.‐G. Zhang, L.‐M. Liu, C. Wang, Nat. Nanotechnol. 2019, 14, 602.
dc.identifier.citedreferenceF. Izumi, K. Momma, Solid State Phenom. 2007, 130, 15.
dc.identifier.citedreferenceW. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.identifier.citedreferenceG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceG. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901.
dc.identifier.citedreferenceR. Xiao, H. Li, L. Chen, Chem. Mater. 2012, 24, 4242.
dc.identifier.citedreferenceY. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, K. Amine, Nat. Mater. 2012, 11, 942.
dc.identifier.citedreferenceM. Armand, J. M. Tarascon, Nature 2008, 451, 652.
dc.identifier.citedreferenceY. Xiao, X. D. Zhang, Y. F. Zhu, P. F. Wang, Y. X. Yin, X. Yang, J. L. Shi, J. Liu, H. Li, X. D. Guo, B. H. Zhong, Y. G. Guo, Adv. Sci. 2019, 6, 1801908.
dc.identifier.citedreferenceN. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.
dc.identifier.citedreferenceS. Guo, J. Yi, Y. Sun, H. Zhou, Energy Environ. Sci. 2016, 9, 2978.
dc.identifier.citedreferenceC. Wu, W. Hua, Z. Zhang, B. Zhong, Z. Yang, G. Feng, W. Xiang, Z. Wu, X. Guo, Adv. Sci. 2018, 5, 1800519.
dc.identifier.citedreferenceH. Kim, J. C. Kim, M. Bianchini, D.‐H. Seo, J. Rodriguez‐Garcia, G. Ceder, Adv. Energy Mater. 2018, 8, 1702384.
dc.identifier.citedreferenceY.‐H. Zhu, X. Yang, T. Sun, S. Wang, Y.‐L. Zhao, J.‐M. Yan, X.‐B. Zhang, Electrochem. Energy Rev. 2018, 1, 548.
dc.identifier.citedreferenceM. D. Radin, J. Alvarado, Y. S. Meng, A. Van der Ven, Nano Lett. 2017, 17, 7789.
dc.identifier.citedreferenceC. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 1980, 99, 81.
dc.identifier.citedreferenceJ.‐N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, X.‐Q. Yang, X. Huang, L. Chen, H. Li, Nat. Energy 2019, 4, 594.
dc.identifier.citedreferenceJ. Kim, H. Lee, H. Cha, M. Yoon, M. Park, J. Cho, Adv. Energy Mater. 2018, 8, 1702028.
dc.identifier.citedreferenceG.‐L. Xu, Q. Liu, K. K. S. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, M. Shao, M. Ouyang, F. Pan, Z. Chen, K. Amine, G. Chen, Nat. Energy 2019, 4, 484.
dc.identifier.citedreferenceC. Xu, W. Xiang, Z. Wu, Y. Xu, Y. Li, Y. Wang, Y. Xiao, X. Guo, B. Zhong, ACS Appl. Mater. Interfaces 2019, 11, 16629.
dc.identifier.citedreferenceL. Qiu, W. Xiang, W. Tian, C.‐L. Xu, Y.‐C. Li, Z.‐G. Wu, T.‐R. Chen, K. Jia, D. Wang, F.‐R. He, X.‐D. Guo, Nano Energy 2019, 63, 103818.
dc.identifier.citedreferenceJ. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
dc.identifier.citedreferenceY. Xiao, P. F. Wang, Y. X. Yin, Y. F. Zhu, Y. B. Niu, X. D. Zhang, J. Zhang, X. Yu, X. D. Guo, B. H. Zhong, Y. G. Guo, Adv. Mater. 2018, 30, 1803765.
dc.identifier.citedreferenceW. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006.
dc.identifier.citedreferenceY. You, A. Manthiram, Adv. Energy Mater. 2018, 8, 1701785.
dc.identifier.citedreferenceB. Xiao, X. Sun, Adv. Energy Mater. 2018, 8, 1802057.
dc.identifier.citedreferenceF. Lin, I. M. Markus, D. Nordlund, T. C. Weng, M. D. Asta, H. L. Xin, M. M. Doeff, Nat. Commun. 2014, 5, 3529.
dc.identifier.citedreferenceH. Kim, M. G. Kim, H. Y. Jeong, H. Nam, J. Cho, Nano Lett. 2015, 15, 2111.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.