Show simple item record

On the Accuracy of Reconstructing Plasma Sheet Electron Fluxes From Temperature and Density Models

dc.contributor.authorDubyagin, S.
dc.contributor.authorGanushkina, N.
dc.contributor.authorLiemohn, M.
dc.date.accessioned2020-02-05T15:07:31Z
dc.date.availableWITHHELD_11_MONTHS
dc.date.available2020-02-05T15:07:31Z
dc.date.issued2019-12
dc.identifier.citationDubyagin, S.; Ganushkina, N.; Liemohn, M. (2019). "On the Accuracy of Reconstructing Plasma Sheet Electron Fluxes From Temperature and Density Models." Space Weather 17(12): 1704-1719.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/153699
dc.description.abstractThe particle simulations of the inner magnetosphere require time‐dependent boundary conditions for the particle flux set in the transition region between dipolar and tail‐like configurations. Usually, the flux is reconstructed from particle density and temperature predicted by empirical models or magnetohydrodynamic simulations. However, this method requires assumptions about the energy spectra to be made. This uncertainty adds to the inaccuracy of the empirical models or magnetohydrodynamic predictions. We use electron flux measurements in the nightside at r=6–11RE in the 1–300 keV energy range to estimate the potential accuracy of the electron flux reconstruction from the macroscopic plasma parameter models. We use kappa and Maxwellian distribution functions as well as two population approximations to describe the electron spectra. It is found that this method works reasonably well in the thermal energy range (1–10 keV). However, the average difference between measured and predicted fluxes becomes as large as 1 order of magnitude at energies ≥40 keV. The optimal value of the kappa parameter is found to be between 3 and 4, but it depends strongly on magnetic local time and radial distance. We conclude that the development of the flux‐based models (model of differential flux at several reference energies) instead of density and temperature models can be considered as a promising direction.Key PointsUsage of a standard distribution function, like a single Maxwellian, to reconstruct plasma sheet electron fluxes is only good below 10 keVA kappa, and in some cases two population distributions, gives a better fit, with the kappa parameter strongly depending on locationThe error with observed fluxes can be large, implying that a more advanced model is needed, based on flux instead of distribution moments
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Geophysical Union (AGU)
dc.subject.otherinner magnetosphere
dc.subject.otherempirical model
dc.subject.othergeomagnetic storm
dc.subject.otherelectron flux
dc.titleOn the Accuracy of Reconstructing Plasma Sheet Electron Fluxes From Temperature and Density Models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153699/1/swe20922.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/153699/2/swe20922_am.pdf
dc.identifier.doi10.1029/2019SW002285
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceSillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15, 1602 – 1614. https://doi.org/10.1002/2017SW001698
dc.identifier.citedreferenceJordanova, V. K., Kistler, L. M., Thomsen, M. F., & Mouikis, C. G. ( 2003 ). Effects of plasma sheet variability on the fast initial ring current decay. Geophysical Research Letters, 30 ( 6 ), 1311. https://doi.org/10.1029/2002GL016576
dc.identifier.citedreferenceJordanova, V. K., & Miyoshi, Y. ( 2005 ). Relativistic model of ring current and radiation belt ions and electrons: Initial results. Geophysical Research Letters, 32, L14104. https://doi.org/10.1029/2005GL023020
dc.identifier.citedreferenceJordanova, V. K., Yu, Y., Niehof, J. T., Skoug, R. M., Reeves, G. D., Kletzing, C. A., Fennell, J. F., & Spence, H. E. ( 2014 ). Simulations of inner magnetosphere dynamics with an expanded RAM‐SCB model and comparisons with Van Allen Probes observations. Geophysical Research Letters, 41, 2687 – 2694. https://doi.org/10.1002/2014GL059533
dc.identifier.citedreferenceKorth, H., Thomsen, M. F., Borovsky, J. E., & McComas, D. J. ( 1999 ). Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104 ( A11 ), 25,047 – 25,061. https://doi.org/10.1029/1999JA900292
dc.identifier.citedreferenceLiemohn, M. W., & Welling, D. T. ( 2016 ). Ionospheric and solar wind contributions to magnetospheric ion density and temperature throughout the mag‐ netotail, in Magnetosphereionosphere coupling in the solar system. American Geophysical Union (AGU), 101 – 114 Retrieved from, https://doi.org/10.1002/9781119066880.ch8
dc.identifier.citedreferenceLivadiotis, G. ( 2015 ). Introduction to special section on origins and properties of kappa distributions: Statistical background and properties of kappa distributions in space plasmas. Journal of Geophysical Research: Space Physics, 120, 1607 – 1619. https://doi.org/10.1002/2014JA020825
dc.identifier.citedreferenceMcFadden, J. P., Carlson, C. W., Larson, D., Bonnell, J., Mozer, F., Angelopou‐los, V., et al. ( 2008, Dec 01). THEMIS ESA first science results and performance issues. Space Science Reviews, 141 ( 1 ), 477 – 508. https://doi.org/10.1007/s11214-008-9433-1
dc.identifier.citedreferenceMcFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., & Angelopoulos, V. ( 2008, Dec 01). The THEMIS ESA plasma instrument and in‐flight calibration. Space Science Reviews, 141 ( 1 ), 277 – 302. https://doi.org/10.1007/s11214-008-9440-2
dc.identifier.citedreferenceNelder, J. A., & Mead, R. ( 1965 ). A simplex method for function minimization. The Computer Journal, 7 ( 4 ), 308 – 313. https://doi.org/10.1093/comjnl/7.4.308
dc.identifier.citedreferencePaschmann, G., & Daly, P. ( 1998 ). Analysis methods for multi‐spacecraft data. Bern, Switzerland:  International Space Science Institute.
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D. L., & Zhou, X.‐Z. ( 2015 ). Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 120, 4369 – 4383. https://doi.org/10.1002/2015JA021166
dc.identifier.citedreferenceThomsen, M. F., Bame, S. J., McComas, D. J., Moldwin, M. B., & Moore, K. R. ( 1994 ). The magnetospheric lobe at geosynchronous orbit. Journal of Geophysical Research, 99 ( A9 ), 17,283 – 17,293. https://doi.org/10.1029/94JA00423
dc.identifier.citedreferenceThomsen, M. F., Henderson, M. G., & Jordanova, V. K. ( 2013 ). Statistical properties of the surface‐charging environment at geosynchronous orbit. Space Weather, 11, 237 ‐ 244. Retrieved from, https://doi.org/10.1002/swe.20049
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the rice convection model. Space Science Reviews, 107 ( 1 ), 175,196 – 175,196. https://doi.org/10.1023/A:1025532008047
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., Wolf, R., & Lyon, J. ( 2004 ). RCM meets LFM: initial results of one‐way coupling. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 66 ( 15 ), 1361 – 1370. https://doi.org/(Towards%20an%20Integrated%20Model%20of%20the%20Space%20Weather%20System)">(Towards an Integrated Model of the Space Weather System), "https://doi.org/10.1016/j.jastp.2004.03.022
dc.identifier.citedreferenceVasyliunas, V. M. ( 1968 ). A survey of low‐energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. Journal of Geophysical Research, 73 ( 9 ), 2839 – 2884. https://doi.org/10.1029/JA073i009p02839
dc.identifier.citedreferenceWalsh, A. P., Fazakerley, A. N., Forsyth, C., Owen, C. J., Taylor, M. G. G. T., & Rae, I. J. ( 2013 ). Sources of electron pitch angle anisotropy in the magnetotail plasma sheet. Journal of Geophysical Research: Space Physics, 118, 6042 – 6054. Retrieved from, https://doi.org/10.1002/jgra.50553
dc.identifier.citedreferenceWang, C.‐P., Gkioulidou, M., Lyons, L. R., & Angelopoulos, V. ( 2012 ). Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. Journal of Geophysical Research, 117, A08215. https://doi.org/10.1029/2012JA017658
dc.identifier.citedreferenceWang, C.‐P., Lyons, L. R., Nagai, T., Weygand, J. M., & McEntire, R. W. ( 2007 ). Sources, transport, and distributions of plasma sheet ions and electrons and dependences on interplanetary parameters under northward interplanetary magnetic field. Journal of Geophysical Research, 112, A10224. https://doi.org/10.1029/2007JA012522
dc.identifier.citedreferenceWing, S., Johnson, J. R., Newell, P. T., & Meng, C.‐I. ( 2005 ). Dawn‐dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. Journal of Geophysical Research, 110, A08205. https://doi.org/10.1029/2005JA011086
dc.identifier.citedreferenceXiao, F., Shen, C., Wang, Y., Zheng, H., & Wang, S. ( 2008 ). Energetic electron distributions fitted with a relativistic kappa‐type function at geosynchronous orbit. Journal of Geophysical Research, 113, A05203. https://doi.org/10.1029/2007JA012903
dc.identifier.citedreferenceYu, Y., Rastätter, L., Jordanova, V. K., Zheng, Y., Engel, M., Fok, M.‐C., & Kuznetsova, M. M. ( 2019 ). Initial results from the GEM challenge on the spacecraft surface charging environment. Space Weather, 17, 299 ‐ 312. Retrieved from, https://doi.org/10.1029/2018SW002031
dc.identifier.citedreferenceAngelopoulos, V. ( 2008, Apr 22). The THEMIS mission. Space Science Reviews, 141, 5 – 34. https://doi.org/10.1007/s11214-008-9336-1
dc.identifier.citedreferenceAngelopoulos, V., Sibeck, D., Carlson, C. W., McFadden, J. P., Larson, D., Lin, R. P., Bonnell, J. W., Mozer, F. S., Ergun, R., Cully, C., Glassmeier, K. H., Auster, U., Roux, A., LeContel, O., Frey, S., Phan, T., Mende, S., Frey, H., Donovan, E., Russell, C. T., Strangeway, R., Liu, J., Mann, I., Rae, J., Raeder, J., Li, X., Liu, W., Singer, H. J., Sergeev, V. A., Apatenkov, S., Parks, G., Fillingim, M., & Sigwarth, J. ( 2008, Dec 01). First results from the THEMIS mission. Space Science Reviews, 141 ( 1 ), 453 – 476. https://doi.org/10.1007/s11214-008-9378-4
dc.identifier.citedreferenceÅsnes, A., Friedel, R. W. H., Lavraud, B., Reeves, G. D., Taylor, M. G. G. T., & Daly, P. ( 2008 ). Statistical properties of tail plasma sheet electrons above 40 keV. Journal of Geophysical Research, 113, A03202. Retrieved from, https://doi.org/10.1029/2007JA012502
dc.identifier.citedreferenceAuster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., & Wiedemann, M. ( 2008, Dec 01). The THEMIS fluxgate magnetometer. Space Science Reviews, 141 ( 1 ), 235 – 264. https://doi.org/10.1007/s11214-008-9365-9
dc.identifier.citedreferenceBuzulukova, N., Fok, M.‐C., Pulkkinen, A., Kuznetsova, M., Moore, T. E., Glocer, A., & Rastätter, L. ( 2010 ). Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM‐BATS‐R‐US coupled model. Journal of Geophysical Research, 115, A05210. https://doi.org/10.1029/2009JA014621
dc.identifier.citedreferenceChen, M. W., Liu, S., Schulz, M., Roeder, J. L., & Lyons, L. R. ( 2006 ). Magnetically self‐consistent ring current simulations during the 19 October 1998 storm. Journal of Geophysical Research, 111, A11S15. https://doi.org/10.1029/2006JA011620
dc.identifier.citedreferenceChriston, S. P., Williams, D. J., Mitchell, D. G., Huang, C. Y., & Frank, L. A. ( 1989 ). Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions. Journal of Geophysical Research Space Physics, 94 ( A10 ), 13,409 – 13,424. https://doi.org/10.1029/JA094iA10p13409
dc.identifier.citedreferenceChriston, S. P., Williams, D. J., Mitchell, D. G., Huang, C. Y., & Frank, L. A. ( 1991 ). Spectral characteristics of plasma sheet ion and electron populations during disturbed geomagnetic conditions. Journal of Geophysical Research, 96 ( A1 ), 1 – 22. https://doi.org/10.1029/90JA01633
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Tóth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109, A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceMatéo‐Vélez, J.‐C., Sicard, A., Payan, D., Ganushkina, N., Meredith, N. P., & Sillanpää, I. ( 2018 ). Spacecraft surface charging induced by severe environments at geosynchronous orbit. Space Weather, 16, 89 ‐ 106. Retrieved from, https://doi.org/10.1002/2017SW001689
dc.identifier.citedreferenceDenton, M. H., Henderson, M. G., Jordanova, V. K., Thomsen, M. F., Borovsky, J. E., Woodroffe, J., Hartley D. P. Pitchford, D. ( 2016 ). An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 14, 511 ‐ 523. Retrieved from, https://doi.org/10.1002/2016SW001409
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N. Y., Sillanpää, I., & Runov, A. ( 2016 ). Solar wind‐ driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times. Journal of Geophysical Research: Space Physics, 121, 8343 – 8360. https://doi.org/10.1002/2016JA022947
dc.identifier.citedreferenceEspinoza, C. M., Stepanova, M., Moya, P. S., Antonova, E. E., & Valdivia, J. A. ( 2018 ). Ion and electron к distribution functions along the plasma sheet. Geophysical Research Letters, 45, 6362 – 6370. https://doi.org/10.1029/2018GL078631
dc.identifier.citedreferenceFerguson, D., Hilmer, R., & Davis, V. ( 2015, 03). Best Geosynchronous Earth Orbit daytime spacecraft charging index. Journal of Spacecraft and Rockets, 52, 526 – 543 doi: https://doi.org/10.2514/1.A32959.
dc.identifier.citedreferenceFok, M.‐C., Buzulukova, N. Y., Chen, S.‐H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere‐ionosphere model. Journal of Geophysical Research: Space Physics, 119, 7522 – 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceFok, M.‐C., Moore, T. E., & Spjeldvik, W. N. ( 2001 ). Rapid enhancement of radiation belt electron fluxes due to substorm dipolarization of the geomagnetic field. Journal of Geophysical Research, 106, 3873 – 3881. https://doi.org/10.1029/2000JA000150
dc.identifier.citedreferenceFok, M.‐C., Wolf, R. A., Spiro, R. W., & Moore, T. E. ( 2001 ). Comprehensive computational model of Earth’s ring current. Journal of Geophysical Research Space Physics, 106 ( A5 ), 8417 – 8424. https://doi.org/10.1029/2000JA000235
dc.identifier.citedreferenceFujimoto, M., Terasawa, T., Mukai, T., Saito, Y., Yamamoto, T., & Kokubun, S. ( 1998 ). Plasma entry from the flanks of the near‐Earth magnetotail: Geotail observations. Journal of Geophysical Research, 103 ( A3 ), 4391 – 4408. Retrieved from, https://doi.org/10.1029/97JA03340
dc.identifier.citedreferenceGabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. ( 2014 ). Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 119, 2512 ‐ 2535. Retrieved from, https://doi.org/10.1002/2013JA019638
dc.identifier.citedreferenceGanushkina, N. Y., Amariutei, O. A., Shprits, Y. Y., & Liemohn, M. W. ( 2013 ). Transport of the plasma sheet electrons to the geostationary distances. Journal of Geophysical Research: Space Physics, 118, 82 – 98. https://doi.org/10.1029/2012JA017923
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Amariutei, O. A., & Pitchford, D. ( 2014 ). Low‐energy electrons (5‐50 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 119, 246 – 259. https://doi.org/10.1002/2013JA019304
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Milillo, A., & Liemohn, M. ( 2006 ). Evolution of the proton ring current energy distribution during 21–25 April 2001 storm. Journal of Geophysical Research, 111, A11S08. https://doi.org/10.1029/2006JA011609
dc.identifier.citedreferenceHarel, M., Wolf, R. A., Reiff, P. H., Spiro, R. W., Burke, W. J., Rich, F. J., & Smiddy, M. ( 1981 ). Quantitative simulation of a magnetospheric substorm 1. Model logic and overview. Journal of Geophysical Research, 86 ( A4 ), 2217 – 2241. https://doi.org/10.1029/JA086iA04p02217
dc.identifier.citedreferenceHasegawa, H., Fujimoto, M., Saito, Y., & Mukai, T. ( 2004 ). Dense and stagnant ions in the low‐latitude boundary region under northward interplanetary magnetic field. Geophysical Research Letters, 31, L06802. https://doi.org/10.1029/2003GL019120
dc.identifier.citedreferenceJordanova, V. K., Boonsiriseth, A., Thorne, R. M., & Dotan, Y. ( 2003 ). Ring current asymmetry from global simulations using a high‐resolution electric field model. Journal of Geophysical Research, 108 ( A12 ), 1443. https://doi.org/10.1029/2003JA009993
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.