In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome
Berkowitz, Bruce A.; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y.; Berri, Ali M.; Dernay, Kristin; Haacke, E. Mark; Shafie‐khorassani, Fatema; Podolsky, Robert H.; Gant, John C.; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G.; Bennett, Brian M.; Roberts, Robin
2017-09
Citation
Berkowitz, Bruce A.; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y.; Berri, Ali M.; Dernay, Kristin; Haacke, E. Mark; Shafie‐khorassani, Fatema ; Podolsky, Robert H.; Gant, John C.; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G.; Bennett, Brian M.; Roberts, Robin (2017). "In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome." The FASEB Journal 31(9): 4179-4186.
Abstract
Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greaterâ thanâ normal 1/T1 that is quenchable with antioxidant as measured by quenchâ assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proofâ ofâ concept data in models of ADâ like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. ADâ like models showed an abnormal gradient along the CA1 dorsalâ ventral axis of excessive free radical production as measured by Quest MRI, and redoxâ sensitive calcium dysregulation as measured by manganeseâ enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subâ field oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.â Berkowitz, B. A., Lenning J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafieâ Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017). www.fasebj.orgâ Berkowitz, Bruce A., Lenning, Jacob, Khetarpal, Nikita, Tran, Catherine, Wu, Johnny Y., Berri, Ali M., Dernay, Kristin, Haacke, E. Mark, Shafieâ Khorassani, Fatema, Podolsky, Robert H., Gant, John C., Maimaiti, Shaniya, Thibault, Olivier, Murphy, Geoffrey G., Bennett, Brian M., Roberts, Robin, In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017)Publisher
Wiley
ISSN
0892-6638 1530-6860
Other DOIs
Types
Article
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.