Show simple item record

In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome

dc.contributor.authorBerkowitz, Bruce A.
dc.contributor.authorLenning, Jacob
dc.contributor.authorKhetarpal, Nikita
dc.contributor.authorTran, Catherine
dc.contributor.authorWu, Johnny Y.
dc.contributor.authorBerri, Ali M.
dc.contributor.authorDernay, Kristin
dc.contributor.authorHaacke, E. Mark
dc.contributor.authorShafie‐khorassani, Fatema
dc.contributor.authorPodolsky, Robert H.
dc.contributor.authorGant, John C.
dc.contributor.authorMaimaiti, Shaniya
dc.contributor.authorThibault, Olivier
dc.contributor.authorMurphy, Geoffrey G.
dc.contributor.authorBennett, Brian M.
dc.contributor.authorRoberts, Robin
dc.date.accessioned2020-03-17T18:26:35Z
dc.date.available2020-03-17T18:26:35Z
dc.date.issued2017-09
dc.identifier.citationBerkowitz, Bruce A.; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y.; Berri, Ali M.; Dernay, Kristin; Haacke, E. Mark; Shafie‐khorassani, Fatema ; Podolsky, Robert H.; Gant, John C.; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G.; Bennett, Brian M.; Roberts, Robin (2017). "In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome." The FASEB Journal 31(9): 4179-4186.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154241
dc.description.abstractHippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greaterâ thanâ normal 1/T1 that is quenchable with antioxidant as measured by quenchâ assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proofâ ofâ concept data in models of ADâ like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. ADâ like models showed an abnormal gradient along the CA1 dorsalâ ventral axis of excessive free radical production as measured by Quest MRI, and redoxâ sensitive calcium dysregulation as measured by manganeseâ enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subâ field oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.â Berkowitz, B. A., Lenning J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafieâ Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017). www.fasebj.orgâ Berkowitz, Bruce A., Lenning, Jacob, Khetarpal, Nikita, Tran, Catherine, Wu, Johnny Y., Berri, Ali M., Dernay, Kristin, Haacke, E. Mark, Shafieâ Khorassani, Fatema, Podolsky, Robert H., Gant, John C., Maimaiti, Shaniya, Thibault, Olivier, Murphy, Geoffrey G., Bennett, Brian M., Roberts, Robin, In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017)
dc.publisherWiley
dc.subject.otherdorsoventral CA1
dc.subject.otherreactive oxygen species
dc.subject.otherMRI
dc.subject.otherneurodevelopment disorders
dc.subject.otherneurodegenerative disease
dc.titleIn vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154241/1/fsb2fj201700229r.pdf
dc.identifier.doi10.1096/fj.201700229R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceBennett, H. F., Brown III, R. D., Koenig, S. H., and Swartz, H. M. ( 1987 ) Effects of nitroxides on the magnetic field and temperature dependence of 1/ T 1 of solvent water protons. Magn. Reson. Med. 4, 93 â 111
dc.identifier.citedreferenceBissig, D., and Berkowitz, B. A. ( 2009 ) Manganeseâ enhanced MRI of layerâ specific activity in the visual cortex from awake and freeâ moving rats. Neuroimage 44, 627 â 635
dc.identifier.citedreferenceHolt, A. G., Bissig, D., Mirza, N., Rajah, G., and Berkowitz, B. ( 2010 ) Evidence of key tinnitusâ related brain regions documented by a unique combination of manganeseâ enhanced MRI and acoustic startle reflex testing. PLoS One 5, e14260
dc.identifier.citedreferenceHyodo, F., Murugesan, R., Matsumoto, K., Hyodo, E., Subramanian, S., Mitchell, J. B., and Krishna, M. C. ( 2008 ) Monitoring redoxâ sensitive paramagnetic contrast agent by EPRI, OMRI and MRI. J. Magn. Reson. 190, 105 â 112
dc.identifier.citedreferenceBakalova, R., Georgieva, E., Ivanova, D., Zhelev, Z., Aoki, I., and Saga, T. ( 2015 ) Magnetic resonance imaging of mitochondrial dysfunction and metabolic activity, accompanied by overproduction of superoxide. ACS Chem. Neurosci. 6, 1922 â 1929
dc.identifier.citedreferenceBeeman, S. C., Shui, Y.â B., Perezâ Torres, C. J., Engelbach, J. A., Ackerman, J. J. H., and Garbow, J. R. ( 2016 ) O 2 â sensitive MRI distinguishes brain tumor versus radiation necrosis in murine models. Magn. Reson. Med. 75, 2442 â 2447
dc.identifier.citedreferenceZhelev, Z., Bakalova, R., Aoki, I., Lazarova, D., and Saga, T. ( 2013 ) Imaging of superoxide generation in the dopaminergic area of the brain in Parkinsonâ s disease, using mitoâ TEMPO. ACS Chem. Neurosci. 4, 1439 â 1445
dc.identifier.citedreferenceHyodo, F., Chuang, K. H., Goloshevsky, A. G., Sulima, A., Griffiths, G. L., Mitchell, J. B., Koretsky, A. P., and Krishna, M.C. ( 2008 ) Brain redox imaging using bloodâ brain barrierâ permeable nitroxide MRI contrast agent. J. Cereb. Blood Flow Metab. 28, 1165 â 1174
dc.identifier.citedreferenceTowner, R. A., Smith, N., Saunders, D., Henderson, M., Downum, K., Lupu, F., Silasiâ Mansat, R., Ramirez, D. C., Gomezâ Mejiba, S. E., Bonini, M. G., Ehrenshaft, M., and Mason, R. P. ( 2012 ) In vivo imaging of immunoâ spin trapped radicals with molecular magnetic resonance imaging in a diabetic mouse model. Diabetes 61, 2405 â 2413
dc.identifier.citedreferenceMason, R. P. ( 2016 ) Imaging free radicals in organelles, cells, tissue, and in vivo with immunoâ spin trapping. Redox Biol. 8, 422 â 429
dc.identifier.citedreferenceKuppusamy, P., and Zweier, J. L. ( 1989 ) Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem. 264, 9880 â 9884
dc.identifier.citedreferenceIlangovan, G., Zweier, J. L., and Kuppusamy, P. ( 2004 ) Microximetry: simultaneous determination of oxygen consumption and free radical production using electron paramagnetic resonance spectroscopy. Methods in Enzymology 381, 747 â 762
dc.identifier.citedreferenceRocha, T. L. A., Diasâ Junior, C. A., Possomatoâ Vieira, J. S., Goncalvesâ Rizzi, V. H., Nogueira, F.R., de Souza, K.M., Braz, L. G., and Braz, M. G. ( 2015 ) Sevoflurane induces DNA damage whereas isoflurane leads to higher antioxidative status in anesthetized rats. BioMed Res. Int. 2015, 264971
dc.identifier.citedreferenceSchallner, N., Ulbrich, F., Engelstaedter, H., Biermann, J., Auwaerter, V., Loop, T., and Goebel, U. ( 2014 ) Isoflurane but not sevoflurane or desflurane aggravates injury to neurons in vitro and in vivo via p75NTRâ NFâ κB activation. Anesth. Analg. 119, 1429 â 1441
dc.identifier.citedreferenceCrystal, G.J., Malik, G., Yoon, S. H., and Kim, S.J. ( 2012 ) Isoflurane late preconditioning against myocardial stunning is associated with enhanced antioxidant defenses. Acta Anaesthesiol. Scand. 56, 39 â 47
dc.identifier.citedreferenceHu, Q., Ma, Q., Zhan, Y., He, Z., Tang, J., Zhou, C., and Zhang, J. ( 2011 ) Isoflurane enhanced hemorrhagic transformation by impairing antioxidant enzymes in hyperglycemic MCAO rats. Stroke 42, 1750 â 1756
dc.identifier.citedreferenceDurak, I., Oztürk, H. S., Dikmen, B., Güven, C., Cimen, M. Y., Büyükkoçak, S., Kaçmaz, M., and Avci, A. ( 1999 ) Isoflurane impairs antioxidant defence system in guinea pig kidney. Can. J. Anaesth. 46, 797 â 802
dc.identifier.citedreferenceKudo, M., Aono, M., Lee, Y., Massey, G., Pearlstein, R. D., and Warner, D. S. ( 2001 ) Absence of direct antioxidant effects from volatile anesthetics in primary mixed neuronalâ glial cultures. Anesthesiology 94, 303 â 312
dc.identifier.citedreferenceFanselow, M. S., and Dong, H.â W. ( 2010 ) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7 â 19
dc.identifier.citedreferenceYiu, A. P., Rashid, A. J., and Josselyn, S. A. ( 2011 ) Increasing CREB function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimerâ s disease. Neuropsychopharmacology 36, 2169 â 2186
dc.identifier.citedreferenceAshton, D., Van Reempts J., Haseldonckx, M., and Willems, R. ( 1989 ) Dorsalâ ventral gradient in vulnerability of CA1 hippocampus to ischemia: a combined histological and electrophysiological study. Brain Res. 487, 368 â 372
dc.identifier.citedreferenceGrivas, I., Michaloudi, H., Batzios, Ch., Chiotelli, M., Papatheodoropoulos, C., Kostopoulos, G., and Papadopoulos, G. C. ( 2003 ) Vascular network of the rat hippocampus is not homogeneous along the septotemporal axis. Brain Res. 971, 245 â 249
dc.identifier.citedreferenceMalik, R., Dougherty, K. A., Parikh, K., Byrne, C., and Johnston, D. ( 2016 ) Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26, 341 â 361
dc.identifier.citedreferenceRamos de Carvalho, J. E., Verbraak, F. D., Aalders, M. C., van Noorden, C. J., and Schlingemann, R. O. ( 2014 ) Recent advances in ophthalmic molecular imaging. Surv. Ophthalmol. 59, 393 â 413
dc.identifier.citedreferenceMuralidharan, P., Cserne Szappanos, H., Ingley, E., and Hool, L. ( 2016 ) Evidence for redox sensing by a human cardiac calcium channel. Sci. Rep. 6, 19067
dc.identifier.citedreferencePrunty, M.C., Aung, M.H., Hanif, A.M., Allen, R.S., Chrenek, M.A., Boatright, J. H., Thule, P. M., Kundu, K., Murthy, N., and Pardue, M. T. ( 2015 ) In vivo imaging of retinal oxidative stress using a reactive oxygen speciesâ coactivated fluorescent probe. Invest. Ophthalmol. Vis. Sci. 56, 5862 â 5870
dc.identifier.citedreferenceHyodo, F., Soule, B. P., Matsumoto, K., Matusmoto, S., Cook, J. A., Hyodo, E., Sowers, A. L., Krishna, M. C., and Mitchell, J. B. ( 2008 ) Assessment of tissue redox status using metabolic responsive contrast agents and magnetic resonance imaging. J. Pharm. Pharmacol. 60, 1049 â 1060
dc.identifier.citedreferenceMatsumura, A., Emoto, M.C., Suzuki, S., Iwahara, N., Hisahara, S., Kawamata, J., Suzuki, H., Yamauchi, A., Satoâ Akaba, H., Fujii, H. G., and Shimohama, S. ( 2015 ) Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging. Free Radic. Biol. Med. 85, 165 â 173
dc.identifier.citedreferenceSarracanie, M., Armstrong, B. D., Stockmann, J., and Rosen, M. S. ( 2014 ) High speed 3D overhauserâ enhanced MRI using combined bâ SSFP and compressed sensing. Magn. Reson. Med. 71, 735 â 745
dc.identifier.citedreferenceRayner, C. L., Bottle, S. E., Gole, G. A., Ward, M. S., and Barnett, N. L. ( 2016 ) Realâ time quantification of oxidative stress and the protective effect of nitroxide antioxidants. Neurochem. Int. 92, 1 â 12
dc.identifier.citedreferenceEkanger, L. A., and Allen, M. J. ( 2015 ) Overcoming the concentrationâ dependence of responsive probes for magnetic resonance imaging. Metallomics 7, 405 â 421
dc.identifier.citedreferenceMassaad, C.A., Amin, S.K., Hu, L., Mei, Y., Klann, E., and Pautler, R. G. ( 2010 ) Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimerâ s disease. PLoS One 5, e10561
dc.identifier.citedreferenceHan, B. H., Zhou, M. L., Johnson, A. W., Singh, I., Liao, F., Vellimana, A. K., Nelson, J. W., Milner, E., Cirrito, J. R., Basak, J., Yoo, M., Dietrich, H. H., Holtzman, D. M., and Zipfel, G. J. ( 2015 ) Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc. Natl. Acad. Sci. USA 112, E881 â E890
dc.identifier.citedreferenceFanelli, F., Sepe, S., Dâ Amelio, M., Bernardi, C., Cristiano, L., Cimini, A., Cecconi, F., Ceruâ , M. P., and Moreno, S. ( 2013 ) Ageâ dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimerâ s disease. Mol. Neurodegener. 8, 8
dc.identifier.citedreferenceFurman, R., Murray, I. V. J., Schall, H. E., Liu, Q., Ghiwot, Y., and Axelsen, P. H. ( 2016 ) Amyloid plaqueâ associated oxidative degradation of uniformly radiolabeled arachidonic acid. ACS Chem. Neurosci. 7, 367 â 377
dc.identifier.citedreferenceVlÄ ek, K., and Laczó, J. ( 2014 ) Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimerâ s disease. Front. Behav. Neurosci. 8, 89
dc.identifier.citedreferenceSantini, E., Turner, K. L., Ramaraj, A. B., Murphy, M. P., Klann, E., and Kaphzan, H. ( 2015 ) Mitochondrial superoxide contributes to hippocampal synaptic dysfunction and memory deficits in Angelman syndrome model mice. J. Neurosci. 35, 16213 â 16220
dc.identifier.citedreferenceMoser, E., Moser, M. B., and Andersen, P. ( 1993 ) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J. Neurosci. 13, 3916 â 3925
dc.identifier.citedreferenceStrange, B. A., Witter, M. P., Lein, E. S., and Moser, E. I. ( 2014 ) Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655 â 669
dc.identifier.citedreferenceButterfield, D. A., Reed, T., Perluigi, M., De Marco, C., Coccia, R., Cini, C., and Sultana, R. ( 2006 ) Elevated proteinâ bound levels of the lipid peroxidation product, 4â hydroxyâ 2â nonenal, in brain from persons with mild cognitive impairment. Neurosci. Lett. 397, 170 â 173
dc.identifier.citedreferenceNunomura, A., Tamaoki, T., Motohashi, N., Nakamura, M., McKeel, D. W., Jr., Tabaton, M., Lee, H. G., Smith, M. A., Perry, G., and Zhu, X. ( 2012 ) The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J. Neuropathol. Exp. Neurol. 71, 233 â 241
dc.identifier.citedreferenceShimohama, S., Tanino, H., Kawakami, N., Okamura, N., Kodama, H., Yamaguchi, T., Hayakawa, T., Nunomura, A., Chiba, S., Perry, G., Smith, M. A., and Fujimoto, S. ( 2000 ) Activation of NADPH oxidase in Alzheimerâ s disease brains. Biochem. Biophys. Res. Commun. 273, 5 â 9
dc.identifier.citedreferenceNunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C.S., Petersen, R. B., and Smith, M. A. ( 2001 ) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759 â 767
dc.identifier.citedreferenceArimon, M., Takeda, S., Post, K. L., Svirsky, S., Hyman, B. T., and Berezovska, O. ( 2015 ) Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis. 84, 109 â 119
dc.identifier.citedreferencePraticò, D., Uryu, K., Leight, S., Trojanoswki, J.Q., and Lee, V.M. ( 2001 ) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183 â 4187
dc.identifier.citedreferenceMcManus, M. J., Murphy, M.P., and Franklin, J. L. ( 2011 ) The mitochondriaâ targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimerâ s disease. J. Neurosci. 31, 15703 â 15715
dc.identifier.citedreferenceMassaad, C.A., Washington, T.M., Pautler, R.G., and Klann, E. ( 2009 ) Overexpression of SODâ 2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimerâ s disease. Proc. Natl. Acad. Sci. USA 106, 13576 â 13581
dc.identifier.citedreferenceKanamaru, T., Kamimura, N., Yokota, T., Iuchi, K., Nishimaki, K., Takami, S., Akashiba, H., Shitaka, Y., Katsura, K., Kimura, K., and Ohta, S. ( 2015 ) Oxidative stress accelerates amyloid deposition and memory impairment in a doubleâ transgenic mouse model of Alzheimerâ s disease. Neurosci. Lett. 587, 126 â 131
dc.identifier.citedreferenceChen, L., Na, R., and Ran, Q. ( 2014 ) Enhanced defense against mitochondrial hydrogen peroxide attenuates ageâ associated cognition decline. Neurobiol. Aging 35, 2552 â 2561
dc.identifier.citedreferenceBerkowitz, B. A., Bredell, B. X., Davis, C., Samardzija, M., Grimm, C., and Roberts, R. ( 2015 ) Measuring in vivo free radical production by the outer retina. Invest. Ophthalmol. Vis. Sci. 56, 7931 â 7938
dc.identifier.citedreferenceSurmeier, D. J., Guzman, J. N., Sanchezâ Padilla, J., and Goldberg, J. A. ( 2011 ) The origins of oxidant stress in Parkinsonâ s disease and therapeutic strategies. Antioxid. Redox Signal. 14, 1289 â 1301
dc.identifier.citedreferenceDâ Souza, Y., Elharram, A., Soonâ Shiong, R., Andrew, R. D., and Bennett, B. M. ( 2015 ) Characterization of Aldh2(â /â ) mice as an ageâ related model of cognitive impairment and Alzheimerâ sdisease. Mol. Brain 8, 27
dc.identifier.citedreferenceHardas, S. S., Sultana, R., Clark, A. M., Beckett, T. L., Szweda, L. I., Murphy, M. P., and Butterfield, D. A. ( 2013 ) Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol. 1, 80 â 85
dc.identifier.citedreferenceBerkowitz, B. A., Lewin, A. S., Biswal, M. R., Bredell, B. X., Davis, C., and Roberts, R. ( 2016 ) MRI of retinal free radical production with laminar resolution in vivo. Invest. Ophthalmol. Vis. Sci. 57, 577 â 585
dc.identifier.citedreferenceStinnett, G., Moore, K., Samuel, E., Loic, G., Graham, B., Tour, J., and Pautler, R. G. ( 2015 ) A novel assay for the in vivo detection of reactive oxygen species using MRI. ISMRM Meeting Abstracts, 1917
dc.identifier.citedreferenceDu, Y., Veenstra, A., Palczewski, K., and Kern, T. S. ( 2013 ) Photoreceptor cells are major contributors to diabetesâ induced oxidative stress and local inflammation in the retina. Proc. Natl. Acad. Sci. USA 110, 16586 â 16591
dc.identifier.citedreferenceBerkowitz, B. A., Wen, X., Thoreson, W. B., Kern, T. S., and Roberts, R. ( 2015 ) Abnormal rod calcium homeostasis and the development of retinal oxidative stress in diabetes. Invest. Ophthalmol. Vis. Sci. 56, 4280
dc.identifier.citedreferenceFridovich, I. ( 1970 ) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245, 4053 â 4057
dc.identifier.citedreferenceSuzuki, Y. J., Tsuchiya, M., and Packer, L. ( 1991 ) Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species. Free Radic. Res. Commun. 15, 255 â 263
dc.identifier.citedreferenceDâ Souza, Y., Dowlatshahi, S., and Bennett, B. M. ( 2011 ) Changes in aldehyde dehydrogenase 2 expression in rat blood vessels during glyceryl trinitrate tolerance development and reversal. Br. J. Pharmacol. 164 ( 2b ), 632 â 643
dc.identifier.citedreferenceGriñánâ Ferré, C., Sarroca, S., Ivanova, A., Puigoriolâ Illamola, D., Aguado, F., Camins, A., Sanfeliu, C., and Pallàs, M. ( 2016 ) Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice. Aging (Albany NY) 8, 664 â 684
dc.identifier.citedreferenceModi, K. K., Roy, A., Brahmachari, S., Rangasamy, S. B., and Pahan, K. ( 2015 ) Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of Alzheimerâ s disease. PLoS One 10, e0130398
dc.identifier.citedreferenceLin, B., Hasegawa, Y., Takane, K., Koibuchi, N., Cao, C., and Kimâ Mitsuyama, S. ( 2016 ) Highâ fatâ diet intake enhances cerebral amyloid angiopathy and cognitive impairment in a mouse model of Alzheimerâ s disease, independently of metabolic disorders. J. Am. Heart Assoc. 5, e003154
dc.identifier.citedreferenceWang, Q., Xiao, B., Cui, S., Song, H., Qian, Y., Dong, L., An, H., Cui, Y., Zhang, W., He, Y., Zhang, J., Yang, J., Zhang, F., Hu, G., Gong, X., Yan, Z., Zheng, Y., and Wang, X. ( 2014 ) Triptolide treatment reduces Alzheimerâ s disease (AD)â like pathology through inhibition of BACE1 in a transgenic mouse model of AD. Dis. Model. Mech. 7, 1385 â 1395
dc.identifier.citedreferenceDi Domenico, F., Tramutola, A., and Butterfield, D. A. ( 2016 ) Role of 4â hydroxyâ 2â nonenal (HNE) in the pathogenesis of alzheimer disease and other selected ageâ related neurodegenerative disorders. [Epub ahead of print] Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed. 2016.10.490
dc.identifier.citedreferenceVan Woerden, G. M., Harris, K. D., Hojjati, M. R., Gustin, R. M., Qiu, S., de Avila Freire, R., Jiang, Y. H., Elgersma, Y., and Weeber, E. J. ( 2007 ) Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat. Neurosci. 10, 280 â 282
dc.identifier.citedreferenceGörlach, A., Bertram, K., Hudecova, S., and Krizanova, O. ( 2015 ) Calcium and ROS: a mutual interplay. Redox Biology 6, 260 â 271
dc.identifier.citedreferenceTamagnini, F., Scullion, S., Brown, J. T., and Randall, A. D. ( 2015 ) Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus 25, 786 â 797
dc.identifier.citedreferenceYang, L., Xu, J., Minobe, E., Yu, L., Feng, R., Kameyama, A., Yazawa, K., and Kameyama, M. ( 2013 ) Mechanisms underlying the modulation of l â type Ca 2+ channel by hydrogen peroxide in guinea pig ventricular myocytes. J. Physiol. Sci. 63, 419 â 426
dc.identifier.citedreferencePancani, T., Anderson, K.L., Brewer, L.D., Kadish, I., DeMoll, C., Landfield, P. W., Blalock, E. M., Porter, N. M., and Thibault, O. ( 2013 ) Effect of highâ fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats. Neurobiol. Aging 34, 1977 â 1987
dc.identifier.citedreferenceBlalock, E.M., Phelps, J.T., Pancani, T., Searcy, J.L., Anderson, K.L., Gant, J. C., Popovic, J., Avdiushko, M. G., Cohen, D. A., Chen, K.â C., Porter, N. M., and Thibault, O. ( 2010 ) Effects of longâ term pioglitazone treatment on peripheral and central markers of aging. PLoS One 5, e10405
dc.identifier.citedreferenceBissig, D., and Berkowitz, B. A. ( 2014 ) Testing the calcium hypothesis of aging in the rat hippocampus in vivo using manganeseâ enhanced MRI. Neurobiol. Aging 35, 1453 â 1458
dc.identifier.citedreferenceKelley, E. E., Khoo, N. K. H., Hundley, N. J., Malik, U. Z., Freeman, B.A., and Tarpey, M.M. ( 2010 ) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic. Biol. Med. 48, 493 â 498
dc.identifier.citedreferenceWen, Y., Li, W., Poteet, E. C., Xie, L., Tan, C., Yan, L. J., Ju, X., Liu, R., Qian, H., Marvin, M.A., Goldberg, M.S., She, H., Mao, Z., Simpkins, J. W., and Yang, S. H. ( 2011 ) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 286, 16504 â 16515
dc.identifier.citedreferenceGomes, M. B., and Negrato, C. A. ( 2014 ) Alphaâ lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 6, 80
dc.identifier.citedreferenceBerkowitz, B. A., Bissig, D., Patel, P., Bhatia, A., and Roberts, R. ( 2012 ) Acute systemic 11â cis â retinal intervention improves abnormal outer retinal ion channel closure in diabetic mice. Mol. Vis. 18, 372 â 376
dc.identifier.citedreferenceBerkowitz, B. A., Bissig, D., and Roberts, R. ( 2016 ) MRI of rod cell compartmentâ specific function in disease and treatment in vivo. Prog. Retin. Eye Res. 51, 90 â 106
dc.identifier.citedreferenceFreeman, R., and Hill, H. D. W. ( 1971 ) Fourier transform study of NMR spinâ lattice relaxation of â progressive saturation.â J. Chem. Phys. 54, 3367 â 3377
dc.identifier.citedreferenceHaacke, E.M., Brown, R.W., Thompson, M.R., and Venkatesan, R. ( 1999 ) Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, Hoboken, NJ, USA
dc.identifier.citedreferenceDécorps, M., Laval, M., Confort, S., and Chaillout, J.J. ( 1985 ) Signal to noise and spatial localization of NMR spectra with a surface coil and the saturationâ recovery sequence. J. Magn. Reson. 61, 418 â 425
dc.identifier.citedreferenceHsu, J. J., Glover, G. H., and Zaharchuk, G. ( 2009 ) Optimizing saturationâ recovery measurements of the longitudinal relaxation rate under time constraints. Magn. Reson. Med. 62, 1202 â 1210
dc.identifier.citedreferenceThibault, O., and Landfield, P. W. ( 1996 ) Increase in single l â type calcium channels in hippocampal neurons during aging. Science 272, 1017 â 1020
dc.identifier.citedreferenceThibault, O., Pancani, T., Landfield, P. W., and Norris, C. M. ( 2012 ) Reduction in neuronal l â type calcium channel activity in a double knockâ in mouse model of Alzheimerâ s disease. Biochim. Biophys. Acta 1822, 546 â 549
dc.identifier.citedreferenceBissig, D., and Berkowitz, B. A. ( 2011 ) Sameâ session functional assessment of rat retina and brain with manganeseâ enhanced MRI. Neuroimage 58, 749 â 760
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.