Show simple item record

Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18

dc.contributor.authorKelm, Matthias
dc.contributor.authorLehoux, Sylvain
dc.contributor.authorAzcutia, Veronica
dc.contributor.authorCummings, Richard D.
dc.contributor.authorNusrat, Asma
dc.contributor.authorParkos, Charles A.
dc.contributor.authorBrazil, Jennifer C.
dc.date.accessioned2020-03-17T18:33:04Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-03-17T18:33:04Z
dc.date.issued2020-02
dc.identifier.citationKelm, Matthias; Lehoux, Sylvain; Azcutia, Veronica; Cummings, Richard D.; Nusrat, Asma; Parkos, Charles A.; Brazil, Jennifer C. (2020). "Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18." The FASEB Journal 34(2): 2326-2343.
dc.identifier.issn0892-6638
dc.identifier.issn1530-6860
dc.identifier.urihttps://hdl.handle.net/2027.42/154461
dc.description.abstractPolymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well‐described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N‐linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation‐dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N‐glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN‐associated tissue damage in chronic inflammatory diseases.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercolitis
dc.subject.otherglycans
dc.subject.otherinflammation
dc.subject.otherneutrophil
dc.titleRegulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/1/fsb220152-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/2/fsb220152_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/3/fsb220152-sup-0004-TableS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/4/fsb220152-sup-0001-FigS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/5/fsb220152.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/6/fsb220152-sup-0002-FigS2.pdf
dc.identifier.doi10.1096/fj.201902542R
dc.identifier.sourceThe FASEB Journal
dc.identifier.citedreferenceGraham IL, Gresham HD, Brown EJ. An immobile subset of plasma membrane CD11b/CD18 (Mac‐1) is involved in phagocytosis of targets recognized by multiple receptors. J Immunol. 1989; 142: 2352 ‐ 2358.
dc.identifier.citedreferenceGirao DK, Cavada BS, de Freitas Pires A, et al. The galactose‐binding lectin isolated from Bauhinia bauhinioides Mart seeds inhibits neutrophil rolling and adhesion via primary cytokines. J Mol Recognit. 2015; 28: 285 ‐ 292.
dc.identifier.citedreferenceKuehn C, Van Epps DE. Lectin‐mediated induction of human neutrophil chemotaxis, chemokinesis, and cap formation. Infect Immun. 1980; 29: 600 ‐ 608.
dc.identifier.citedreferenceDupuy AG, Caron E. Integrin‐dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci. 2008; 121: 1773 ‐ 1783.
dc.identifier.citedreferenceKerrigan AM, Brown GD. C‐type lectins and phagocytosis. Immunobiology. 2009; 214: 562 ‐ 575.
dc.identifier.citedreferenceHajto T, Hostanska K, Gabius HJ. Modulatory potency of the beta‐galactoside‐specific lectin from mistletoe extract (Iscador) on the host defense system in vivo in rabbits and patients. Cancer Res. 1989; 49: 4803 ‐ 4808.
dc.identifier.citedreferenceConejeros I, Patterson R, Burgos RA, Hermosilla C, Werling D. Induction of reactive oxygen species in bovine neutrophils is CD11b, but not dectin‐1‐dependent. Vet Immunol Immunopathol. 2011; 139: 308 ‐ 312.
dc.identifier.citedreferenceEl Kebir D, Jozsef L, Pan W, Filep JG. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation. Circ Res. 2008; 103: 352 ‐ 359.
dc.identifier.citedreferenceLin J, He K, Zhao G, et al. Mincle inhibits neutrophils and macrophages apoptosis in A. fumigatus keratitis. Int Immunopharmacol. 2017; 52: 101 ‐ 109.
dc.identifier.citedreferenceSastre L, Kishimoto TK, Gee C, Roberts T, Springer TA. The mouse leukocyte adhesion proteins Mac‐1 and LFA‐1: studies on mRNA translation and protein glycosylation with emphasis on Mac‐1. J Immunol. 1986; 137: 1060 ‐ 1065.
dc.identifier.citedreferenceMocsai A, Zhou M, Meng F, Tybulewicz VL, Lowell CA. Syk is required for integrin signaling in neutrophils. Immunity. 2002; 16: 547 ‐ 558.
dc.identifier.citedreferenceFutosi K, Mocsai A. Tyrosine kinase signaling pathways in neutrophils. Immunol Rev. 2016; 273: 121 ‐ 139.
dc.identifier.citedreferenceSchymeinsky J, Then C, Sindrilaru A, et al. Syk‐mediated translocation of PI3Kdelta to the leading edge controls lamellipodium formation and migration of leukocytes. PLoS ONE. 2007; 2: e1132.
dc.identifier.citedreferenceLiu X, Ma B, Malik AB, et al. Bidirectional regulation of neutrophil migration by mitogen‐activated protein kinases. Nat Immunol. 2012; 13: 457 ‐ 464.
dc.identifier.citedreferenceHsu MJ, Lee SS, Lee ST, Lin WW. Signaling mechanisms of enhanced neutrophil phagocytosis and chemotaxis by the polysaccharide purified from Ganoderma lucidum. Br J Pharmacol. 2003; 139: 289 ‐ 298.
dc.identifier.citedreferenceWang X, Qin W, Xu X, et al. Endotoxin‐induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation. Proc Natl Acad Sci U S A. 2017; 114: 4483 ‐ 4488.
dc.identifier.citedreferenceZhou X, Gao XP, Fan J, et al. LPS activation of Toll‐like receptor 4 signals CD11b/CD18 expression in neutrophils. Am J Physiol Lung Cell Mol Physiol. 2005; 288: L655 ‐ L662.
dc.identifier.citedreferenceWatanabe K, Blew B, Scherer M, et al. CD11b mRNA expression in neutrophils isolated from peripheral blood and gingival crevicular fluid. J Clin Periodontol. 1997; 24: 814 ‐ 822.
dc.identifier.citedreferenceDong G, Song L, Tian C, et al. FOXO1 Regulates Bacteria‐Induced Neutrophil Activity. Front Immunol. 2017; 8: 1088.
dc.identifier.citedreferenceGahmberg CG. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol. 1997; 9: 643 ‐ 650.
dc.identifier.citedreferenceAltieri DC, Bader R, Mannucci PM, Edgington TS. Oligospecificity of the cellular adhesion receptor Mac‐1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol. 1988; 107: 1893 ‐ 1900.
dc.identifier.citedreferenceBeller DI, Springer TA, Schreiber RD. Anti‐Mac‐1 selectively inhibits the mouse and human type three complement receptor. J Exp Med. 1982; 156: 1000 ‐ 1009.
dc.identifier.citedreferenceEhlers MR. CR3: a general purpose adhesion‐recognition receptor essential for innate immunity. Microbes Infect. 2000; 2: 289 ‐ 294.
dc.identifier.citedreferenceClark MA, Jepson MA, Simmons NL, Hirst BH. Selective binding and transcytosis of Ulex europaeus 1 lectin by mouse Peyer’s patch M‐cells in vivo. Cell Tissue Res. 1995; 282: 455 ‐ 461.
dc.identifier.citedreferenceWang Q, Yu LG, Campbell BJ, Milton JD, Rhodes JM. Identification of intact peanut lectin in peripheral venous blood. Lancet. 1998; 352: 1831 ‐ 1832.
dc.identifier.citedreferenceParkos CA, Delp C, Arnaout MA, Madara JL. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18‐mediated event and enhanced efficiency in physiological direction. J Clin Invest. 1991; 88: 1605 ‐ 1612.
dc.identifier.citedreferenceArnaout MA, Dana N, Pitt J, Todd RF 3rd. Deficiency of two human leukocyte surface membrane glycoproteins (Mo1 and LFA‐1). Fed Proc. 1985; 44: 2664 ‐ 2670.
dc.identifier.citedreferenceSpringer TA, Teplow DB, Dreyer WJ. Sequence homology of the LFA‐1 and Mac‐1 leukocyte adhesion glycoproteins and unexpected relation to leukocyte interferon. Nature. 1985; 314: 540 ‐ 542.
dc.identifier.citedreferenceMayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014; 9: 181 ‐ 218.
dc.identifier.citedreferenceFournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012; 5: 354 ‐ 366.
dc.identifier.citedreferenceBressenot A, Salleron J, Bastien C, Danese S, Boulagnon‐Rombi C, Peyrin‐Biroulet L. Comparing histological activity indexes in UC. Gut. 2015; 64: 1412 ‐ 1418.
dc.identifier.citedreferenceGeboes K, Riddell R, Ost A, Jensfelt B, Persson T, Lofberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000; 47: 404 ‐ 409.
dc.identifier.citedreferenceSimpson JL, Phipps S, Gibson PG. Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis. Pharmacol Ther. 2009; 124: 86 ‐ 95.
dc.identifier.citedreferenceKansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996; 88: 3259 ‐ 3287.
dc.identifier.citedreferenceMcEver RP, Cummings RD. Role of PSGL‐1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997; 100: S97 ‐ S103.
dc.identifier.citedreferenceLey K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7: 678 ‐ 689.
dc.identifier.citedreferenceRosen SD, Bertozzi CR. The selectins and their ligands. Curr Opin Cell Biol. 1994; 6: 663 ‐ 673.
dc.identifier.citedreferenceLouis NA, Hamilton KE, Kong T, Colgan SP. HIF‐dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J. 2005; 19: 950 ‐ 959.
dc.identifier.citedreferenceBrazil JC, Lee WY, Kolegraff KN, Nusrat A, Parkos CA, Louis NA. Neutrophil migration across intestinal epithelium: evidence for a role of CD44 in regulating detachment of migrating cells from the luminal surface. J Immunol. 2010; 185: 7026 ‐ 7036.
dc.identifier.citedreferenceLiu Y, O’Connor MB, Mandell KJ, et al. Peptide‐mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein alpha. J Immunol. 2004; 172: 2578 ‐ 2585.
dc.identifier.citedreferenceSumagin R, Robin AZ, Nusrat A, Parkos CA. Transmigrated neutrophils in the intestinal lumen engage ICAM‐1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol. 2014; 7: 905 ‐ 915.
dc.identifier.citedreferenceBrazil JC, Liu R, Sumagin R, et al. alpha3/4 Fucosyltransferase 3‐dependent synthesis of Sialyl Lewis A on CD44 variant containing exon 6 mediates polymorphonuclear leukocyte detachment from intestinal epithelium during transepithelial migration. J Immunol. 2013; 191: 4804 ‐ 4817.
dc.identifier.citedreferenceBrazil JC, Sumagin R, Stowell SR, et al. Expression of Lewis‐a glycans on polymorphonuclear leukocytes augments function by increasing transmigration. J Leukoc Biol. 2017; 102: 753 ‐ 762.
dc.identifier.citedreferenceBrazil JC, Sumagin R, Cummings RD, Louis NA, Parkos CA. Targeting of neutrophil lewis X blocks transepithelial migration and increases phagocytosis and degranulation. Am J Pathol. 2016; 186: 297 ‐ 311.
dc.identifier.citedreferenceFlemming S, Luissint AC, Nusrat A, Parkos CA. Analysis of leukocyte transepithelial migration using an in vivo murine colonic loop model. JCI Insight. 2018; 3 ( 20 ); e99722. https://doi.org/10.1172/jci.insight.99722.
dc.identifier.citedreferenceParkos CA, Colgan SP, Bacarra AE, et al. Intestinal epithelia (T84) possess basolateral ligands for CD11b/CD18‐mediated neutrophil adherence. Am J Physiol. 1995; 268: C472 ‐ C479.
dc.identifier.citedreferenceArnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990; 75: 1037 ‐ 1050.
dc.identifier.citedreferenceCoxon A, Rieu P, Barkalow FJ, et al. A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity. 1996; 5: 653 ‐ 666.
dc.identifier.citedreferenceKarlsson A. Wheat germ agglutinin induces NADPH‐oxidase activity in human neutrophils by interaction with mobilizable receptors. Infect Immun. 1999; 67: 3461 ‐ 3468.
dc.identifier.citedreferenceLock R, Johansson A, Orselius K, Dahlgren C. Analysis of horseradish peroxidase‐amplified chemiluminescence produced by human neutrophils reveals a role for the superoxide anion in the light emitting reaction. Anal Biochem. 1988; 173: 450 ‐ 455.
dc.identifier.citedreferenceBecker DJ, Lowe JB. Leukocyte adhesion deficiency type II. Biochim Biophys Acta. 1999; 1455: 193 ‐ 204.
dc.identifier.citedreferenceRhodes JM. Unifying hypothesis for inflammatory bowel disease and associated colon cancer: sticking the pieces together with sugar. Lancet. 1996; 347: 40 ‐ 44.
dc.identifier.citedreferenceRyder SD, Parker N, Ecclestone D, Haqqani MT, Rhodes JM. Peanut lectin stimulates proliferation in colonic explants from patients with inflammatory bowel disease and colon polyps. Gastroenterology. 1994; 106: 117 ‐ 124.
dc.identifier.citedreferenceWerner L, Sturm A, Roggenbuck D, et al. Antibodies against glycoprotein 2 are novel markers of intestinal inflammation in patients with an ileal pouch. J Crohns Colitis. 2013; 7: e522 ‐ e532.
dc.identifier.citedreferenceBalsam LB, Liang TW, Parkos CA. Functional mapping of CD11b/CD18 epitopes important in neutrophil‐epithelial interactions: a central role of the I domain. J Immunol. 1998; 160: 5058 ‐ 5065.
dc.identifier.citedreferenceMandell KJ, McCall IC, Parkos CA. Involvement of the junctional adhesion molecule‐1 (JAM1) homodimer interface in regulation of epithelial barrier function. J Biol Chem. 2004; 279: 16254 ‐ 16262.
dc.identifier.citedreferenceSato T, Clevers H. Growing self‐organizing mini‐guts from a single intestinal stem cell: mechanism and applications. Science. 2013; 340: 1190 ‐ 1194.
dc.identifier.citedreferenceSato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt‐villus structures in vitro without a mesenchymal niche. Nature. 2009; 459: 262 ‐ 265.
dc.identifier.citedreferenceZou WY, Blutt SE, Crawford SE, et al. Human intestinal enteroids: new models to study gastrointestinal virus infections. Methods Mol Biol. 2019; 1576: 229 ‐ 247. https://doi.org/10.1007/7651_2017_1.
dc.identifier.citedreferenceDiamond MS, Staunton DE, de Fougerolles AR, et al. ICAM‐1 (CD54): a counter‐receptor for Mac‐1 (CD11b/CD18). J Cell Biol. 1990; 111: 3129 ‐ 3139.
dc.identifier.citedreferenceMiller LJ, Wiebe M, Springer TA. Purification and alpha subunit N‐terminal sequences of human Mac‐1 and p150,95 leukocyte adhesion proteins. J Immunol. 1987; 138: 2381 ‐ 2383.
dc.identifier.citedreferenceStrohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: a cross‐platform software environment for precise analysis of mass spectrometric data. Anal Chem. 2010; 82: 4648 ‐ 4651.
dc.identifier.citedreferenceZen K, Liu Y, Cairo D, Parkos CA. CD11b/CD18‐dependent interactions of neutrophils with intestinal epithelium are mediated by fucosylated proteoglycans. J Immunol. 2002; 169: 5270 ‐ 5278.
dc.identifier.citedreferenceChen Y, Junger WG. Measurement of oxidative burst in neutrophils. Methods Mol Biol. 2012; 844: 115 ‐ 124.
dc.identifier.citedreferenceGriffin GK, Newton G, Tarrio ML, et al. IL‐17 and TNF‐alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012; 188: 6287 ‐ 6299.
dc.identifier.citedreferenceSwamydas M, Lionakis MS. Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. J Vis Exp. 2013;( 77 ), e50586.
dc.identifier.citedreferenceShibuya N, Goldstein IJ, Van Damme EJ, Peumans WJ. Binding properties of a mannose‐specific lectin from the snowdrop ( Galanthus nivalis ) bulb. J Biol Chem. 1988; 263: 728 ‐ 734.
dc.identifier.citedreferenceMorishima S, Morita I, Tokushima T, et al. Expression and role of mannose receptor/terminal high‐mannose type oligosaccharide on osteoclast precursors during osteoclast formation. J Endocrinol. 2003; 176: 285 ‐ 292.
dc.identifier.citedreferenceOki T, Yamazaki Y, Nomura N, Furumai T, Igarashi Y. High‐mannose type oligosaccharide‐dependent apoptosis in U937 cells induced by pradimicin, a mannose‐binding antibiotic. J Antibiot (Tokyo). 1999; 52: 449 ‐ 454.
dc.identifier.citedreferenceNagae M, Soga K, Morita‐Matsumoto K, et al. Phytohemagglutinin from Phaseolus vulgaris (PHA‐E) displays a novel glycan recognition mode using a common legume lectin fold. Glycobiology. 2014; 24: 368 ‐ 378.
dc.identifier.citedreferenceMocsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine‐based activation motifs. Nat Immunol. 2006; 7: 1326 ‐ 1333.
dc.identifier.citedreferenceSheth K, Friel J, Nolan B, Bankey P. Inhibition of p38 mitogen activated protein kinase increases lipopolysaccharide induced inhibition of apoptosis in neutrophils by activating extracellular signal‐regulated kinase. Surgery. 2001; 130: 242 ‐ 248.
dc.identifier.citedreferenceSchymeinsky J, Sindrilaru A, Frommhold D, et al. The Vav binding site of the non‐receptor tyrosine kinase Syk at Tyr 348 is critical for beta2 integrin (CD11/CD18)‐mediated neutrophil migration. Blood. 2006; 108: 3919 ‐ 3927.
dc.identifier.citedreferenceLupher ML Jr, Rao N, Lill NL, et al. Cbl‐mediated negative regulation of the Syk tyrosine kinase. A critical role for Cbl phosphotyrosine‐binding domain binding to Syk phosphotyrosine 323. J Biol Chem. 1998; 273: 35273 ‐ 35281.
dc.identifier.citedreferenceMiller LJ, Springer TA. Biosynthesis and glycosylation of p150,95 and related leukocyte adhesion proteins. J Immunol. 1987; 139: 842 ‐ 847.
dc.identifier.citedreferenceVarki A. Glycan‐based interactions involving vertebrate sialic‐acid‐recognizing proteins. Nature. 2007; 446: 1023 ‐ 1029.
dc.identifier.citedreferenceZerfaoui M, Fukuda M, Sbarra V, Lombardo D, El‐Battari A. alpha(1,2)‐fucosylation prevents sialyl Lewis x expression and E‐selectin‐mediated adhesion of fucosyltransferase VII‐transfected cells. Eur J Biochem. 2000; 267: 53 ‐ 61.
dc.identifier.citedreferenceBateman J, Parida SK, Nash GB. Neutrophil integrin assay for clinical studies. Cell Biochem Funct. 1993; 11: 87 ‐ 91.
dc.identifier.citedreferenceJutila MA, Rott L, Berg EL, Butcher EC. Function and regulation of the neutrophil MEL‐14 antigen in vivo: comparison with LFA‐1 and MAC‐1. J Immunol. 1989; 143: 3318 ‐ 3324.
dc.identifier.citedreferenceSato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. Role of galectin‐3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol. 2002; 168: 1813 ‐ 1822.
dc.identifier.citedreferenceTsikitis VL, Albina JE, Reichner JS. Beta‐glucan affects leukocyte navigation in a complex chemotactic gradient. Surgery. 2004; 136: 384 ‐ 389.
dc.identifier.citedreferenceThornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD. Analysis of the sugar specificity and molecular location of the beta‐glucan‐binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996; 156: 1235 ‐ 1246.
dc.identifier.citedreferenceJondle CN, Sharma A, Simonson TJ, Larson B, Mishra BB, Sharma J. Macrophage galactose‐type lectin‐1 deficiency is associated with increased neutrophilia and hyperinflammation in gram‐negative pneumonia. J Immunol. 2016; 196: 3088 ‐ 3096.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.