Show simple item record

Synthesis, Elasticity, and Spin State of an Intermediate MgSiO3‐FeAlO3 Bridgmanite: Implications for Iron in Earth’s Lower Mantle

dc.contributor.authorZhu, Feng
dc.contributor.authorLiu, Jiachao
dc.contributor.authorLai, Xiaojing
dc.contributor.authorXiao, Yuming
dc.contributor.authorPrakapenka, Vitali
dc.contributor.authorBi, Wenli
dc.contributor.authorAlp, E. Ercan
dc.contributor.authorDera, Przemyslaw
dc.contributor.authorChen, Bin
dc.contributor.authorLi, Jie
dc.date.accessioned2020-08-10T20:56:21Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-08-10T20:56:21Z
dc.date.issued2020-07
dc.identifier.citationZhu, Feng; Liu, Jiachao; Lai, Xiaojing; Xiao, Yuming; Prakapenka, Vitali; Bi, Wenli; Alp, E. Ercan; Dera, Przemyslaw; Chen, Bin; Li, Jie (2020). "Synthesis, Elasticity, and Spin State of an Intermediate MgSiO3‐FeAlO3 Bridgmanite: Implications for Iron in Earth’s Lower Mantle." Journal of Geophysical Research: Solid Earth 125(7): n/a-n/a.
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/2027.42/156245
dc.description.abstractFe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth’s lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite (FA50) with the highest Fe3+‐Al3+ coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3 structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields V0 = 172.1(4) Å3, K0 = 229(4) GPa with K0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3 bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+ substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+ cations exchanged with Al3+ and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+ increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+ fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.Plain Language SummaryFe‐Al‐bearing bridgmanite may be the dominant mineral in the lower mantle, which occupies more than half of Earth’s volume. A subject of much debate is whether spin transition of Fe in bridgmanite produces an observable influence on the physics and chemistry of the lower mantle. In this study, we synthesized a new (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite with the highest Fe3+‐Al3+ coupled substitution known to date. We studied its structure, elasticity, and spin state by multiple experimental and theoretical methods. The high Fe content allowed us to better resolve a pressure‐induced spin transition of Fe3+ caused by Fe‐Al cation exchange at high temperature. Our results suggest that the spin transition is enabled by cation exchange but has a minor effect on the seismic velocity, although it may introduce chemical heterogeneity in the lower mantle. Our study helps resolve existing discrepancies on the nature of spin transition of Fe‐Al bridgmanite and its influence on the physics and chemistry of the lower mantle.Key PointsBridgmanite may contain 50% trivalent cations through Fe3+‐Al3+ coupled substitutionThe bulk sound velocity of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite is 7.7% lower than MgSiO3Through Fe‐Al cation exchange, Fe3+ in (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite undergoes gradual spin transition at lower mantle conditions
dc.publisherWiley Periodicals, Inc.
dc.subject.otherequation of state
dc.subject.othercation exchange
dc.subject.otherspin transition
dc.subject.otherferric iron
dc.subject.otherbridgmanite
dc.subject.otherlower mantle
dc.titleSynthesis, Elasticity, and Spin State of an Intermediate MgSiO3‐FeAlO3 Bridgmanite: Implications for Iron in Earth’s Lower Mantle
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156245/3/jgrb54280-sup-0001-2020JB019964-SI.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156245/2/jgrb54280.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156245/1/jgrb54280_am.pdfen_US
dc.identifier.doi10.1029/2020JB019964
dc.identifier.sourceJournal of Geophysical Research: Solid Earth
dc.identifier.citedreferenceNishio‐Hamane, D., Nagai, T., Fujino, K., Seto, Y., & Takafuji, N. ( 2005 ). Fe 3+ and Al solubilities in MgSiO 3 perovskite: Implication of the Fe 3+ AlO 3 substitution in MgSiO 3 perovskite at the lower mantle condition. Geophysical Research Letters, 32, L16306. https://doi.org/10.1029/2005GL023529
dc.identifier.citedreferenceKurnosov, A., Marquardt, H., Frost, D., Ballaran, T. B., & Ziberna, L. ( 2017 ). Evidence for a Fe 3+ ‐rich pyrolitic lower mantle from (Al, Fe)‐bearing bridgmanite elasticity data. Nature, 543 ( 7646 ), 543 – 546. https://doi.org/10.1038/nature21390
dc.identifier.citedreferenceLai, X., Chen, B., Wang, J., Kono, Y., & Zhu, F. ( 2017 ). Polyamorphic transformations in Fe‐Ni‐C liquids: Implications for chemical evolution of terrestrial planets. Journal of Geophysical Research: Solid Earth, 122, 9745 – 9754. https://doi.org/10.1002/2017JB014835
dc.identifier.citedreferenceLeinenweber, K., Linton, J., Navrotsky, A., Fei, Y., & Parise, J. ( 1995 ). High‐pressure perovskites on the join CaTiO 3 ‐FeTiO 3. Physics and Chemistry of Minerals, 22 ( 4 ), 251 – 258. https://doi.org/10.1007/bf00202258
dc.identifier.citedreferenceLeinenweber, K. D., Tyburczy, J. A., Sharp, T. G., Soignard, E., Diedrich, T., Petuskey, W. B., Wang, Y., & Mosenfelder, J. L. ( 2012 ). Cell assemblies for reproducible multi‐anvil experiments (the COMPRES assemblies). American Mineralogist, 97 ( 2–3 ), 353 – 368. https://doi.org/10.2138/am.2012.3844
dc.identifier.citedreferenceLin, J.‐F., Alp, E. E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., Chow, P., & Zhao, J. ( 2012 ). Electronic spin states of ferric and ferrous iron in the lower‐mantle silicate perovskite. American Mineralogist, 97 ( 4 ), 592 – 597. https://doi.org/10.2138/am.2012.4000
dc.identifier.citedreferenceLin, J.‐F., Speziale, S., Mao, Z., & Marquardt, H. ( 2013 ). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244 – 275. https://doi.org/10.1002/rog.20010
dc.identifier.citedreferenceLiu, J., Dorfman, S. M., Zhu, F., Li, J., Wang, Y., Zhang, D., Xiao, Y., Bi, W., & Alp, E. E. ( 2018 ). Valence and spin states of iron are invisible in Earth’s lower mantle. Nature Communications, 9 ( 1 ), 1284. https://doi.org/10.1038/s41467-018-03671-5
dc.identifier.citedreferenceLiu, J., Mysen, B., Fei, Y., & Li, J. ( 2015 ). Recoil‐free fractions of iron in aluminous bridgmanite from temperature‐dependent Mössbauer spectra. American Mineralogist, 100 ( 8–9 ), 1978 – 1984. https://doi.org/10.2138/am-2015-5245
dc.identifier.citedreferenceMao, Z., Lin, J.‐F., Yang, J., Inoue, T., & Prakapenka, V. B. ( 2015 ). Effects of the Fe 3+ spin transition on the equation of state of bridgmanite. Geophysical Research Letters, 42, 4335 – 4342. https://doi.org/10.1002/2015GL064400
dc.identifier.citedreferenceMao, Z., Lin, J.‐F., Yang, J., Wu, J., Watson, H. C., Xiao, Y., Chow, P., & Zhao, J. ( 2014 ). Spin and valence states of iron in Al‐bearing silicate glass at high pressures studied by synchrotron Mössbauer and X‐ray emission spectroscopy. American Mineralogist, 99 ( 2–3 ), 415 – 423. https://doi.org/10.2138/am.2014.4490
dc.identifier.citedreferenceMcCammon, C., Hutchison, M., & Harris, J. ( 1997 ). Ferric iron content of mineral inclusions in diamonds from Sao Luiz: A view into the lower mantle. Science, 278 ( 5337 ), 434 – 436. https://doi.org/10.1126/science.278.5337.434
dc.identifier.citedreferenceMohn, C. E., & Trønnes, R. G. ( 2016 ). Iron spin state and site distribution in FeAlO3‐bearing bridgmanite. Earth and Planetary Science Letters, 440, 178 – 186. https://doi.org/10.1016/j.epsl.2016.02.010
dc.identifier.citedreferenceNagai, T., Hamane, D., Devi, P. S., Miyajima, N., Yagi, T., Yamanaka, T., & Fujino, K. ( 2005 ). A new polymorph of FeAlO 3 at high pressure. The Journal of Physical Chemistry B, 109 ( 39 ), 18226 – 18229. https://doi.org/10.1021/jp054409s
dc.identifier.citedreferenceNishio‐Hamane, D., Seto, Y., Fujino, K., & Nagai, T. ( 2008 ). Effect of FeAlO 3 incorporation into MgSiO 3 on the bulk modulus of perovskite. Physics of the Earth and Planetary Interiors, 166 ( 3–4 ), 219 – 225. https://doi.org/10.1016/j.pepi.2008.01.002
dc.identifier.citedreferenceOkuda, Y., Ohta, K., Sinmyo, R., Hirose, K., Yagi, T., & Ohishi, Y. ( 2019 ). Effect of spin transition of iron on the thermal conductivity of (Fe,Al)‐bearing bridgmanite. Earth and Planetary Science Letters, 520, 188 – 198. https://doi.org/10.1016/j.epsl.2019.05.042
dc.identifier.citedreferencePotapkin, V., McCammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C., Sinmyo, R., Smirnov, G. V., Chumakov, A. I., Rüffer, R., & Dubrovinsky, L. ( 2013 ). Effect of iron oxidation state on the electrical conductivity of the Earth’s lower mantle. Nature Communications, 4 ( 1 ), 1427. https://doi.org/10.1038/ncomms2436
dc.identifier.citedreferencePrakapenka, V., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., et al. ( 2008 ). Advanced flat top laser heating system for high pressure research at GSECARS: Application to the melting behavior of germanium. High Pressure Research, 28 ( 3 ), 225 – 235. https://doi.org/10.1080/08957950802050718
dc.identifier.citedreferencePrescher, C., & Prakapenka, V. B. ( 2015 ). DIOPTAS: A program for reduction of two‐dimensional X‐ray diffraction data and data exploration. High Pressure Research, 35 ( 3 ), 223 – 230. https://doi.org/10.1080/08957959.2015.1059835
dc.identifier.citedreferenceRoss, N. L., Ko, J., & Prewitt, C. T. ( 1989 ). A new phase transition in MnTiO 3: LiNbO 3 ‐perovskite structure. Physics and Chemistry of Minerals, 16 ( 7 ), 621 – 629. https://doi.org/10.1007/bf00223309
dc.identifier.citedreferenceRustad, J. R., & Yin, Q.‐Z. ( 2009 ). Iron isotope fractionation in the Earth’s lower mantle. Nature Geoscience, 2 ( 7 ), 514 – 518. https://doi.org/10.1038/ngeo546
dc.identifier.citedreferenceSeto, Y., Nishio‐Hamane, D., Nagai, T., & Sata, N. ( 2010 ). Development of a software suite on X‐ray diffraction experiments. Review of High Pressure Science and Technology, 20 ( 3 ), 269 – 276. https://doi.org/10.4131/jshpreview.20.269
dc.identifier.citedreferenceShannon, R. D. ( 1976 ). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32 ( 5 ), 751 – 767. https://doi.org/10.1107/S0567739476001551
dc.identifier.citedreferenceSinmyo, R., Pesce, G., Greenberg, E., McCammon, C., & Dubrovinsky, L. ( 2014 ). Lower mantle electrical conductivity based on measurements of Al,Fe‐bearing perovskite under lower mantle conditions. Earth and Planetary Science Letters, 393, 165 – 172. https://doi.org/10.1016/j.epsl.2014.02.049
dc.identifier.citedreferenceSturhahn, W. ( 2000 ). CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interactions, 125 ( 1/4 ), 149 – 172. https://doi.org/10.1023/A:1012681503686
dc.identifier.citedreferenceToby, B. H. ( 2001 ). EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34 ( 2 ), 210 – 213. https://doi.org/10.1107/S0021889801002242
dc.identifier.citedreferenceTschauner, O., Ma, C., Beckett, J. R., Prescher, C., Prakapenka, V. B., & Rossman, G. R. ( 2014 ). Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346 ( 6213 ), 1100 – 1102. https://doi.org/10.1126/science.1259369
dc.identifier.citedreferenceWang, X., Tsuchiya, T., & Hase, A. ( 2015 ). Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geoscience, 8 ( 7 ), 556 – 559. https://doi.org/10.1038/ngeo2458
dc.identifier.citedreferenceWechsler, B. A., & Prewitt, C. T. ( 1984 ). Crystal structure of ilmenite (FeTiO 3 ) at high temperature and at high pressure. American Mineralogist, 69 ( 1–2 ), 176 – 185.
dc.identifier.citedreferenceYim, W., & Paff, R. ( 1974 ). Thermal expansion of AlN, sapphire, and silicon. Journal of Applied Physics, 45 ( 3 ), 1456 – 1457. https://doi.org/10.1063/1.1663432
dc.identifier.citedreferenceAbrahams, S., & Marsh, P. ( 1986 ). Defect structure dependence on composition in lithium niobate. Acta Crystallographica Section B: Structural Science, 42 ( 1 ), 61 – 68. https://doi.org/10.1107/S0108768186098567
dc.identifier.citedreferenceAkahama, Y., & Kawamura, H. ( 2006 ). Pressure calibration of diamond anvil Raman gauge to 310 GPa. Journal of Applied Physics, 100 ( 4 ). https://doi.org/10.1063/1.2335683
dc.identifier.citedreferenceAndrault, D., Bolfan‐Casanova, N., & Guignot, N. ( 2001 ). Equation of state of lower mantle (Al,Fe)‐MgSiO 3 perovskite. Earth and Planetary Science Letters, 193 ( 3–4 ), 501 – 508. https://doi.org/10.1016/S0012-821X(01)00506-4
dc.identifier.citedreferenceBadro, J. ( 2014 ). Spin transitions in mantle minerals. Annual Review of Earth and Planetary Sciences, 42 ( 1 ), 231 – 248. https://doi.org/10.1146/annurev-earth-042711-105304
dc.identifier.citedreferenceBlake, R., Hessevick, R., Zoltai, T., & Finger, L. W. ( 1966 ). Refinement of the hematite structure. American Mineralogist: Journal of Earth and Planetary Materials, 51 ( 1–2 ), 123 – 129.
dc.identifier.citedreferenceBoffa Ballaran, T., Kurnosov, A., Glazyrin, K., Frost, D. J., Merlini, M., Hanfland, M., & Caracas, R. ( 2012 ). Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth and Planetary Science Letters, 333, 181 – 190. https://doi.org/10.1016/j.epsl.2012.03.029
dc.identifier.citedreferenceCatalli, K., Shim, S.‐H., Dera, P., Prakapenka, V. B., Zhao, J., Sturhahn, W., Chow, P., Xiao, Y., Cynn, H., & Evans, W. J. ( 2011 ). Effects of the Fe 3+ spin transition on the properties of aluminous perovskite—New insights for lower‐mantle seismic heterogeneities. Earth and Planetary Science Letters, 310 ( 3–4 ), 293 – 302. https://doi.org/10.1016/j.epsl.2011.08.018
dc.identifier.citedreferenceCatalli, K., Shim, S.‐H., Prakapenka, V. B., Zhao, J., Sturhahn, W., Chow, P., Xiao, Y., Liu, H., Cynn, H., & Evans, W. J. ( 2010 ). Spin state of ferric iron in MgSiO 3 perovskite and its effect on elastic properties. Earth and Planetary Science Letters, 289 ( 1–2 ), 68 – 75. https://doi.org/10.1016/j.epsl.2009.10.029
dc.identifier.citedreferenceDubrovinsky, L., Boffa‐Ballaran, T., Glazyrin, K., Kurnosov, A., Frost, D., Merlini, M., Hanfland, M., Prakapenka, V. B., Schouwink, P., Pippinger, T., & Dubrovinskaia, N. ( 2010 ). Single‐crystal X‐ray diffraction at megabar pressures and temperatures of thousands of degrees. High Pressure Research, 30 ( 4 ), 620 – 633. https://doi.org/10.1080/08957959.2010.534092
dc.identifier.citedreferenceFei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., & Prakapenka, V. ( 2007 ). Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104 ( 22 ), 9182 – 9186. https://doi.org/10.1073/pnas.0609013104
dc.identifier.citedreferenceFrost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. ( 2004 ). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428 ( 6981 ), 409 – 412. https://doi.org/10.1038/nature02413
dc.identifier.citedreferenceFu, S., Yang, J., Tsujino, N., Okuchi, T., Purevjav, N., & Lin, J.‐F. ( 2019 ). Single‐crystal elasticity of (Al, Fe)‐bearing bridgmanite and seismic shear wave radial anisotropy at the topmost lower mantle. Earth and Planetary Science Letters, 518, 116 – 126. https://doi.org/10.1016/j.epsl.2019.04.023
dc.identifier.citedreferenceFu, S., Yang, J., Zhang, Y., Okuchi, T., McCammon, C., Kim, H. I., Lee, S. K., & Lin, J. F. ( 2018 ). Abnormal elasticity of Fe‐bearing bridgmanite in the Earth’s lower mantle. Geophysical Research Letters, 45, 4725 – 4732. https://doi.org/10.1029/2018GL077764
dc.identifier.citedreferenceFujino, K., Nishio‐Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., Irifune, T., Ishii, H., Hiraoka, N., Cai, Y. Q., & Tsuei, K.‐D. ( 2012 ). Spin transition of ferric iron in Al‐bearing Mg‐perovskite up to 200GPa and its implication for the lower mantle. Earth and Planetary Science Letters, 317, 407 – 412. https://doi.org/10.1016/j.epsl.2011.12.006
dc.identifier.citedreferenceGlazyrin, K., Ballaran, T. B., Frost, D., McCammon, C., Kantor, A., Merlini, M., Hanfland, M., & Dubrovinsky, L. ( 2014 ). Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth and Planetary Science Letters, 393, 182 – 186. https://doi.org/10.1016/j.epsl.2014.01.056
dc.identifier.citedreferenceHoriuchi, H., Hirano, M., Ito, E., & Matsui, Y. ( 1982 ). MgSiO 3 (ilmenite‐type): Single crystal X‐ray diffraction study. American Mineralogist, 67 ( 7–8 ), 788 – 793.
dc.identifier.citedreferenceKidoh, K., Tanaka, K., Marumo, F., & Takei, H. ( 1984 ). Electron density distribution in ilmenite‐type crystals. II. Manganese (II) titanium (IV) trioxide. Acta Crystallographica Section B: Structural Science, 40 ( 4 ), 329 – 332. https://doi.org/10.1107/S0108768184002238
dc.identifier.citedreferenceKo, J., & Prewitt, C. T. ( 1988 ). High‐pressure phase transition in MnTiO 3 from the ilmenite to the LiNbO 3 structure. Physics and Chemistry of Minerals, 15 ( 4 ), 355 – 362. https://doi.org/10.1007/BF00311040
dc.identifier.citedreferenceKresse, G., & Furthmüller, J. ( 1996 ). Software VASP, Vienna (1999). Physical Review B, 54 ( 11 ), 169.
dc.identifier.citedreferenceKupenko, I., McCammon, C., Sinmyo, R., Cerantola, V., Potapkin, V., Chumakov, A., Kantor, A., Rüffer, R., & Dubrovinsky, L. ( 2015 ). Oxidation state of the lower mantle: In situ observations of the iron electronic configuration in bridgmanite at extreme conditions. Earth and Planetary Science Letters, 423, 78 – 86. https://doi.org/10.1016/j.epsl.2015.04.027
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.