Show simple item record

Repulsion of Polar Gels From Water: Hydration‐Triggered Actuation, Self‐Folding, and 3D Fabrication

dc.contributor.authorRidha, Inam
dc.contributor.authorGorenca, Pranvera
dc.contributor.authorUrie, Russell
dc.contributor.authorShanbhag, Sachin
dc.contributor.authorRege, Kaushal
dc.date.accessioned2020-09-02T14:58:11Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:58:11Z
dc.date.issued2020-08
dc.identifier.citationRidha, Inam; Gorenca, Pranvera; Urie, Russell; Shanbhag, Sachin; Rege, Kaushal (2020). "Repulsion of Polar Gels From Water: Hydration‐Triggered Actuation, Self‐Folding, and 3D Fabrication." Advanced Materials Interfaces 7(16): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/156426
dc.description.abstractSynthetic materials that mimic the ability of natural occurring features to self‐actuate in response to different stimuli have wide applications in soft robotics, microdevices, drug delivery, regenerative medicine, and sensing. Here, unexpected and counter‐intuitive findings are presented in which a strongly polyelectrolytic hydrogel repels from strong polar solvents upon partial exposure (e.g., partial hydration by water). This repulsion drives the actuation and self‐folding of the gel, which results in rapid formation of different three‐dimensional shapes by simply placing the corresponding two‐dimensional films on water. A detailed investigation into the role of hydrogel chemistry, pH, and morphology on hydration‐triggered actuation behavior of the gels and their nanocomposites is described. Finally, a computational model is developed in order to further elucidate mechanisms of actuation. Modeling partial hydration as a repulsive driving force, it tracks the evolution of the shape of the thin film that results from restoring elastic forces. Taken together, the results indicate that an interplay between elastic and Coulombic repulsive forces leads to seemingly unexpected behavior of actuation of strongly polyelectrolytic gels away from polar solvents, leading to a novel and simple fabrication strategy for diverse 3D devices.Strongly polar (polyelectrolyte) gels demonstrate unexpected repulsion and actuation from polar (aqueous) solutions upon partial hydration. Use of different gel chemistries, aqueous conditions, and computational modeling leads to fundamental insights governing this behavior. Hydration‐triggered actuation is employed for the rapid fabrication of diverse 3D shapes from their 2D counterparts.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othercomputational modeling
dc.subject.otherstimuli responsive
dc.subject.otherglycoside
dc.subject.othersmart polymers
dc.subject.otherpolyelectrolyte gels
dc.titleRepulsion of Polar Gels From Water: Hydration‐Triggered Actuation, Self‐Folding, and 3D Fabrication
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156426/3/admi202000509.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156426/2/admi202000509-sup-0001-SuppMat.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156426/1/admi202000509_am.pdfen_US
dc.identifier.doi10.1002/admi.202000509
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceR. Urie, D. Ghosh, I. Ridha, K. Rege, Annu. Rev. Biomed. Eng. 2018, 20, 353.
dc.identifier.citedreferenceJ. Guan, H. He, D. J. Hansford, L. J. Lee, J. Phys. Chem. B 2005, 109, 23134.
dc.identifier.citedreferenceS. K. De, N. R. Aluru, B. Johnson, W. C. Crone, D. J. Beebe, J. Moore, J. Microelectromech. Syst. 2002, 11, 544.
dc.identifier.citedreferenceD. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B. H. Jo, Nature 2000, 404, 588.
dc.identifier.citedreferenceG. Stoychev, N. Puretskiya, L. Ionov, Mater. Chem. 2010, 20, 3496.
dc.identifier.citedreferenceL. Ionov, Soft Matter 2011, 7, 6786.
dc.identifier.citedreferenceS. Zakharchenko, N. Puretskiy, G. Stoychev, M. Stamm, L. Ionov, Soft Matter 2010, 6, 2633.
dc.identifier.citedreferenceV. Stroganov, S. Zakharchenko, E. Sperling, A. K. Meyer, O. G. Schmidt, L. Ionov, Adv. Funct. Mater. 2014, 24, 4357.
dc.identifier.citedreferencea) M. Byun, C. D. Santangelo, R. C. Hayward, Soft Matter 2013, 9, 8264; b) Z. L. Wu, M. Moshe, J. Greener, H. Therien‐Aubin, Z. Nie, E. Sharon, E. Kumacheva, Nat. Commun. 2013, 4, 1586.
dc.identifier.citedreferenceP. Nardinocchi, M. Pezzulla, L. Teresi, Soft Matter 2015, 11, 1492.
dc.identifier.citedreferenceX. H. Yuanqing Gu, C. G. Wiener, B. D. Vogt, N. S. Zacharia, ACS Appl. Mater. Interfaces 2015, 7, 1848.
dc.identifier.citedreferencea) K. N. Lin, T. S. P. Grandhi, S. Goklany, K. Rege, Biotechnol. J. 2018, 13, 1700701; b) J. Candiello, T. S. P. Grandhi, S. K. Goh, V. Vaidya, M. Lemmon‐Kishi, K. R. Eliato, R. Ros, P. N. Kumta, K. Rege, I. Banerjee, Biomaterials 2018, 177, 27; c) T. S. Pavan Grandhi, T. Potta, R. Nitiyanandan, I. Deshpande, K. Rege, Biomaterials 2017, 142, 171; d) T. S. P. Grandhi, A. Mallik, N. Lin, B. Miryala, T. Potta, Y. Tian, K. Rege, ACS Appl. Mater. Interfaces 2014, 6, 18577.
dc.identifier.citedreferenceN. Raravikar, A. Dobos, E. Narayanan, T. S. Grandhi, S. Mishra, K. Rege, M. Goryll, ACS Appl. Mater. Interfaces 2017, 9, 3554.
dc.identifier.citedreferenceM. R. K. Ali, B. Snyder, M. El‐Sayed, Langmuir 2012, 28, 9807.
dc.identifier.citedreferenceC. Huang, K. Rege, J. Heys, ACS Nano 2010, 4, 2892.
dc.identifier.citedreferenceM. V. Kuzimenkova, A. E. Ivanov, I. Y. Galaev, Macromol. Biosci. 2006, 6, 170.
dc.identifier.citedreferenceJ. J. Ojeda, M. E. Romero‐Gonzalez, R. T. Bachmann, R. G. Edyvean, S. A. Banwart, Langmuir 2008, 24, 4032.
dc.identifier.citedreferencea) P. J. Flory, J. R. Jr., J. Chem. Phys. 1943, 11, 521; b) I. Ohmine, T. Tanaka, J. Chem. Phys. 1982, 77, 5725.
dc.identifier.citedreferencea) H. Li, T. Y. Ng, Y. K. Yew, K. Y. Lam, Biomacromolecules 2005, 6, 109; b) T. Wallmersperger, K. Keller, B. Kröplin, M. Günther, G. Gerlach, Colloid Polym. Sci. 2011, 289, 535.
dc.identifier.citedreferenceT. Wallmersperger, F. K. Wittel, M. D’Ottavio, B. Kröplin, Mech. Adv. Mater. Struct. 2008, 15, 228.
dc.identifier.citedreferenceD.‐W. Yin, F. Horkay, J. F. Douglas, J. J. d. Pablo, J. Chem. Phys. 2008, 129, 154902.
dc.identifier.citedreferenceS. Schneider, P. Linse, J. Phys. Chem. B 2003, 107, 8030.
dc.identifier.citedreferenceD. Frenkel, B. Smit, in Understanding Molecular Simulation, Second Edition (Eds: D. Frenkel, B. Smit ), Academic Press, San Diego 2002, 1.
dc.identifier.citedreferenceE. C. Achilleos, R. K. Prud’homme, K. N. Christodoulou, K. R. Gee, I. G. Kevrekidis, Chem. Eng. Sci. 2000, 55, 3335.
dc.identifier.citedreferenceT. S. Grandhi, A. Mallik, N. Lin, B. Miryala, T. Potta, Y. Tian, K. Rege, ACS Appl. Mater. Interfaces 2014, 6, 18577.
dc.identifier.citedreferencea) J. D. Ziebarth, Y. Wang, Biomacromolecules 2010, 11, 29; b) J. Makowska, K. Baginska, M. Makowski, A. Jagielska, A. Liwo, F. Kasprzykowski, L. Chmurzynski, H. A. Scheraga, J. Phys. Chem. B 2006, 110, 4451.
dc.identifier.citedreferenceM. Jamal, N. Bassik, J.‐H. Cho, C. L. Randall, D. H. Gracias, Biomaterials 2010, 31, 1683.
dc.identifier.citedreferenceC. Li, X. Zhang, Z. Cao, Science 2005, 309, 909.
dc.identifier.citedreferenceE. Reyssat, L. Mahadevan, J. R. Soc., Interface 2009, 6, 951.
dc.identifier.citedreferencea) K. Baek, J. H. Jeong, A. Shkumatov, R. Bashir, H. Kong, Adv. Mater. 2013, 25, 5568; b) S. Cheng, Y. Jin, N. Wang, F. Cao, W. Zhang, W. Bai, W. Zheng, X. Jiang, Adv. Mater. 2017, 29, 1700171.
dc.identifier.citedreferencea) J. Mu, C. Hou, H. Wang, Y. Li, Q. Zhang, M. Zhu, Sci. Adv. 2015, 1, e1500533; b) S. Janbaz, R. Hedayati, A. A. Zadpoor, Mater. Horiz. 2016, 3, 536.
dc.identifier.citedreferenceJ. Kim, J. A. Hanna, R. Hayward, C. D. Santangelo, Soft Matter 2012, 8, 2375.
dc.identifier.citedreferenceJ. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Science 2012, 335, 1201.
dc.identifier.citedreferenceR. Fernandes, D. H. Gracias, Adv. Drug Delivery Rev. 2012, 64, 1579.
dc.identifier.citedreferenceT. Yang, R. Ji, X. X. Deng, F. S. Du, Z. C. Li, Soft Matter 2014, 10, 2671.
dc.identifier.citedreferenceG. Huang, Y. Mei, D. J. Thurmer, E. Coric, O. G. Schmidt, Lab Chip 2009, 9, 263.
dc.identifier.citedreferenceQ. Liu, Y. Zhan, J. Wei, W. Ji, W. Hu, Y. Yu, Soft Matter 2017, 13, 6145.
dc.identifier.citedreferenceE. Wang, M. S. Desai, S. W. Lee, Nano Lett. 2013, 13, 2826.
dc.identifier.citedreferenceN. Bassik, B. T. Abebe, K. E. Laflin, D. H. Gracias, Polymer 2010, 51, 6093.
dc.identifier.citedreferenceV. Luchnikov, O. Sydorenko, M. Stamm, Adv. Mater. 2005, 17, 1177.
dc.identifier.citedreferenceA. Richter, G. Paschew, S. Klatt, J. Lienig, K. F. Arndt, H. P. Adler, Sensors 2008, 8, 561.
dc.identifier.citedreferenceD. H. Gracias, Curr. Opin. Chem. Eng. 2013, 2, 112.
dc.identifier.citedreferenceT. G. Leong, A. M. Zarafshar, D. H. Gracias, Small 2010, 6, 792.
dc.identifier.citedreferenceZ. Hu, X. Zhang, Y. Li, Science 1995, 269, 525.
dc.identifier.citedreferenceJ. A. H. Jungwook Kim, R. C. Hayward, C. D. Santangelo, Soft Matter 2012, 8, 2375.
dc.identifier.citedreferenceF. M. Andreopoulos, E. J. Beckman, A. J. Russell, Biomaterials 1998, 19, 1343.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.