Show simple item record

Evaluating Cropland N2O Emissions and Fertilizer Plant Greenhouse Gas Emissions With Airborne Observations

dc.contributor.authorGvakharia, A.
dc.contributor.authorKort, E. A.
dc.contributor.authorSmith, M. L.
dc.contributor.authorConley, S.
dc.date.accessioned2020-09-02T14:59:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-09-02T14:59:01Z
dc.date.issued2020-08-27
dc.identifier.citationGvakharia, A.; Kort, E. A.; Smith, M. L.; Conley, S. (2020). "Evaluating Cropland N2O Emissions and Fertilizer Plant Greenhouse Gas Emissions With Airborne Observations." Journal of Geophysical Research: Atmospheres 125(16): n/a-n/a.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/156438
dc.description.abstractAgricultural activity is a significant source of greenhouse gas emissions. The fertilizer production process emits N2O, CO2, and CH4, and fertilized croplands emit N2O. We present continuous airborne observations of these trace gases in the Lower Mississippi River Basin to quantify emissions from both fertilizer plants and croplands during the early growing season. Observed hourly emission rates from two fertilizer plants are compared with reported inventory values, showing agreement for N2O and CO2 emissions but large underestimation in reported CH4 emissions by up to a factor of 100. These CH4 emissions are consistent with loss rates of 0.6–1.2%. We quantify regional emission fluxes (100 km) of N2O using the airborne mass balance technique, a first application for N2O, and explore linkages to controlling processes. Finally, we demonstrate the ability to use airborne measurements to distinguish N2O emission differences between neighboring fields, determining we can distinguish different emission behaviors of regions on the order of 2.5 km2 with emissions differences of approximately 0.026 μmol m−2 s−1. This suggests airborne approaches such as outlined here could be used to evaluate the impact of different agricultural practices at critical field‐size spatial scales.Key PointsReported N2O and CO2 emissions from fertilizer plants agree with observations, but CH4 is underestimated by orders of magnitudeWe demonstrate mass balance quantification of N2O emissions from agriculture at 10–100 km scalesAirborne measurements can observe and quantify N2O emission differences between agricultural fields of ∼2.5 km2
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherairborne observations
dc.subject.othergreenhouse gas emissions
dc.subject.otherfertilizer
dc.subject.othernitrous oxide
dc.subject.otherflux inversion
dc.subject.othermass balance
dc.titleEvaluating Cropland N2O Emissions and Fertilizer Plant Greenhouse Gas Emissions With Airborne Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156438/3/jgrd56401.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156438/2/jgrd5640-sup-0001-Figure_SI-S01.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/156438/1/jgrd56401_am.pdfen_US
dc.identifier.doi10.1029/2020JD032815
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSmil, V. ( 2011 ). Nitrogen cycle and world food production. World Agriculture, 2 ( 1 ), 9 – 13.
dc.identifier.citedreferenceScaroni, A. E., Ye, S., Lindau, C. W., & Nyman, J. A. ( 2014 ). Nitrous oxide emissions from soils in Louisiana’s Atchafalaya River Basin. Wetlands, 34 ( 3 ), 545 – 554. https://doi.org/10.1007/s13157‐014‐0521‐6
dc.identifier.citedreferenceSchindlbacher, A., Zechmeister‐Boltenstern, S., & Butterbach‐Bahl, K. ( 2004 ). Effects of soil moisture and temperature on NO, NO 2, and N 2 O emissions from European forest soils. Journal of Geophysical Research, 109, D17302. https://doi.org/10.1029/2004JD004590
dc.identifier.citedreferenceSchwarz, J. P., Holloway, J. S., Katich, J. M., McKeen, S., Kort, E. A., Smith, M. L., Ryerson, T. B., Sweeney, C., & Peischl, J. ( 2015 ). Black carbon emissions from the Bakken oil and gas development region. Environmental Science & Technology Letters, 2 ( 10 ), 281 – 285. https://doi.org/10.1021/acs.estlett.5b00225
dc.identifier.citedreferenceSchwietzke, S., Griffin, W. M., Matthews, H. S., & Bruhwiler, L. M. P. ( 2014 ). Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane. Environmental Science & Technology, 48 ( 14 ), 7714 – 7722.
dc.identifier.citedreferenceScott, H. D., Ferguson, J. A., Hanson, L., Fugitt, T., & Smith, E. ( 1998 ). Agricultural water management in the Mississippi Delta Region of Arkansas.
dc.identifier.citedreferenceSelim, H. M., Davidoff, B., Fluhler, H., & Schulin, R. ( 1987 ). Variability of in situ measured mechanical impedance for a fragipan soil. Soil Science, 144 ( 6 ), 442 – 452.
dc.identifier.citedreferenceSmith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. ( 2003 ). Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. European Journal of Soil Science, 54 ( 4 ), 779 – 791. https://doi.org/10.1046/j.1351‐0754.2003.0567.x
dc.identifier.citedreferenceSmith, M. L., Gvakharia, A., Kort, E. A., Sweeney, C., Conley, S. A., Faloona, I., Newberger, T., Schnell, R., Schwietzke, S., & Wolter, S. ( 2017 ). Airborne quantification of methane emissions over the Four Corners Region. Environmental Science & Technology, 51 ( 10 ), 5832 – 5837. https://doi.org/10.1021/acs.est.6b06107
dc.identifier.citedreferenceSmith, M. L., Kort, E. A., Karion, A., Sweeney, C., Herndon, S. C., & Yacovitch, T. I. ( 2015 ). Airborne ethane observations in the Barnett Shale: Quantification of ethane flux and attribution of methane emissions. Environmental Science & Technology, 49 ( 13 ), 8158 – 8166. https://doi.org/10.1021/acs.est.5b00219
dc.identifier.citedreferenceSmith, K. A., Thomson, P. E., Clayton, H., Mctaggart, I. P., & Conen, F. ( 1998 ). Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmospheric Environment, 32 ( 19 ), 3301 – 3309. https://doi.org/10.1016/S1352‐2310(97)00492‐5
dc.identifier.citedreferenceSnipes, C. E., Evans, L. P., Poston, D. H., & Nichols, S. P. ( 2004 ). Agricultural practices of the Mississippi Delta, Water quality assessments in the mississippi delta (Vol.  877, pp. 43 – 60 ). Washington, DC: American Chemical Society. https://doi.org/10.1021/bk‐2004‐0877.ch004
dc.identifier.citedreferenceSoane, B. D. ( 1990 ). The role of organic matter in soil compactibility: A review of some practical aspects. Soil and Tillage Research, 16 ( 1 ), 179 – 201. A Tribute to Prof. IR. H. Kuipers.
dc.identifier.citedreferenceSpeight, J. ( 2007 ). Liquid fuels from natural gas. Handbook of Alternative Fuel Technologies, 153.
dc.identifier.citedreferenceTFI ( 2017 ). 2017 State of the Fertilizer Industry. The Fertilizer Institute, Washington, D.C.
dc.identifier.citedreferenceTian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu, X., Lu, C., & Pan, S. ( 2012 ). Century‐scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States. Ecosystems, 15 ( 4 ), 674 – 694.
dc.identifier.citedreferenceUSDA ( 2017 ). USDA National Agricultural Statistics Service Cropland Data Layer. USDA‐NASS, Washington, DC, Published crop‐specific data layer [Online]. Available at https://nassgeodata.gmu.edu/CropScape/. Last accessed October 2018.
dc.identifier.citedreferenceUSDA ARS ( 2012 ). Lower Mississippi River Basin. Washington, DC: United States Department of Agriculture, Agricultural Research Service.  https://www.ars.usda.gov/ARSUserFiles/np211/LMRBProposal.pdf
dc.identifier.citedreferenceUSDA ARS ( 2014 ). LMRB. United States Department of Agriculture, Agricultural Research Service, https://ltar.ars.usda.gov/sites/lmrb/
dc.identifier.citedreferenceUSDA NASS ( 2017a ). May 8, 2017 Crop Progress Report. USDA‐NASS, Washington, DC, https://downloads.usda.library.cornell.edu/usda‐esmis/files/8336h188j/jw827d33p/kh04dr233/CropProg‐05‐08‐2017.pdf
dc.identifier.citedreferenceUSDA NASS ( 2017b ). May 15, 2017 Crop Progress Report. USDA‐NASS, Washington, DC, https://downloads.usda.library.cornell.edu/usda‐esmis/files/8336h188j/k0698890n/wp988m39m/CropProg‐05‐15‐2017.pdf
dc.identifier.citedreferenceUSGS ( 2018 ). 2018 Mineral Commodity Summaries, Nitrogen (Fixed) Ammonia. United States Geological Survey, https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs‐2018‐nitro.pdf
dc.identifier.citedreferenceUSGS ( 2019 ). 2016 Minerals Yearbook, Nitrogen (Advanced Release). United States Geological Survey, https://prd‐wret.s3‐us‐west‐2.amazonaws.com/assets/palladium/production/atoms/files/myb1‐2016‐nitro.pdf
dc.identifier.citedreferenceVaughn, T. L., Bell, C. S., Yacovitch, T. I., Roscioli, J. R., Herndon, S. C., Conley, S., Schwietzke, S., Heath, G. A., Pétron, G., & Zimmerle, D. ( 2017 ). Comparing facility‐level methane emission rate estimates at natural gas gathering and boosting stations. Elementa: Science of the Anthropocene, 5 ( 0 ), 71. https://doi.org/10.1525/elementa.257
dc.identifier.citedreferenceWhite, W. H., Anderson, J. A., Blumenthal, D. L., Husar, R. B., Gillani, N. V., Husar, J. D., & Wilson, W. E. ( 1976 ). Formation and transport of secondary air pollutants: Ozone and aerosols in the St. Louis urban plume. Science, 194 ( 4261 ), 187 – 189. https://doi.org/10.1126/science.959846
dc.identifier.citedreferenceZhou, X., Passow, F. H., Rudek, J., von Fisher, J. C., Hamburg, S. P., & Albertson, J. D. ( 2019 ). Estimation of methane emissions from the US ammonia fertilizer industry using a mobile sensing approach. Elementa: Science of the Anthropocene, 7 ( 1 ), 19.
dc.identifier.citedreferenceBenjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova, T. G., Olson, J. B., James, E. P., Dowell, D. C., & Grell, G. A. ( 2016 ). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144 ( 4 ), 1669 – 1694.
dc.identifier.citedreferenceBrown, L., Armstrong Brown, S., Jarvis, S. C., Syed, B., Goulding, K. W. T., Phillips, V. R., Sneath, R. W., & Pain, B. F. ( 2001 ). An inventory of nitrous oxide emissions from agriculture in the UK using the IPCC methodology: Emission estimate, uncertainty and sensitivity analysis. Atmospheric Environment, 35, 1439 – 1449. https://doi.org/10.1016/S1352‐2310(00)00361‐7
dc.identifier.citedreferenceButterbach‐Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister‐Boltenstern, S. ( 2013 ). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368 ( 1621 ), 20130122. https://doi.org/10.1098/rstb.2013.0122
dc.identifier.citedreferenceCao, P., Lu, C., & Yu, Z. ( 2017 ). Agricultural nitrogen fertilizer uses in the continental U.S. during 1850–2015: A set of gridded time‐series data. data set PANGAEA, https://doi.org/10.1594/PANGAEA.883585, Supplement to: Cao, P et al. (in review): Historical nitrogen fertilizer use in agricultural ecosystem of the Continental U.S. during 1850–2015: Application rate, timing, and fertilizer types. Earth System Science Data.
dc.identifier.citedreferenceCao, P., Lu, C., & Yu, Z. ( 2018 ). Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: Application rate, timing, and fertilizer types. Earth System Science Data, 10 ( 2 ), 969 – 984. https://doi.org/10.5194/essd‐10‐969‐2018
dc.identifier.citedreferenceChen, Z., Griffis, T. J., Millet, D. B., Wood, J. D., Lee, X., Baker, J. M., Xiao, K., Turner, P. A., Chen, M., Zobitz, J., & Wells, K. C. ( 2016 ). Partitioning N 2 O emissions within the U.S. Corn Belt using an inverse modeling approach. Global Biogeochemical Cycles, 30, 1192 – 1205. https://doi.org/10.1002/2015GB005313
dc.identifier.citedreferenceConley, S. A., Faloona, I. C., Lenschow, D. H., Karion, A., & Sweeney, C. ( 2014 ). A low‐cost system for measuring horizontal winds from single‐engine aircraft. Journal of Atmospheric and Oceanic Technology, 31 ( 6 ), 1312 – 1320. https://doi.org/10.1175/JTECH‐D‐13‐00143.1
dc.identifier.citedreferenceConley, S. A., Faloona, I., Mehrotra, S., Suard, M., Lenschow, D. H., Sweeney, C., Herndon, S., Schwietzke, S., Pétron, G., Pifer, J., Kort, E. A., & Schnell, R. ( 2017 ). Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases. Atmospheric Measurement Techniques, 10 ( 9 ), 3345 – 3358. https://doi.org/10.5194/amt‐10‐3345‐2017
dc.identifier.citedreferenceDel Grosso, S., Parton, W. J., Mosier, A. R., Walsh, M. K., Ojima, D. S., & Thornton, P. E. ( 2006 ). DAYCENT national‐scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35, 1451 – 60.
dc.identifier.citedreferenceDlugokencky, E. J., Myers, R. C., Lang, P. M., Masarie, K. A., Crotwell, A. M., Thoning, K. W., Hall, B. D., Elkins, J. W., & Steele, L. P. ( 2005 ). Conversion of NOAA atmospheric dry air CH 4 mole fractions to a gravimetrically prepared standard scale. Journal of Geophysical Research, 110, D18306. https://doi.org/10.1029/2005JD006035
dc.identifier.citedreferenceDobbie, K. E., McTaggart, I. P., & Smith, K. A. ( 1999 ). Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research, 104 ( D21 ), 26,891 – 26,899. https://doi.org/10.1029/1999JD900378
dc.identifier.citedreferenceEFMA ( 2000 ). Production of nitric acid. Booklet No. 2 of 8: Best available techniques for pollution control in the european fertilizer industry.
dc.identifier.citedreferenceEPA ( 2017 ). Greenhouse Gas Reporting Program (GHGRP) FLIGHT Data system. US Environmental Protection Agency, http://ghgdata.epa.gov/ghgp/
dc.identifier.citedreferenceEhrhardt, F., Soussana, J.‐F., Bellocchi, G., Grace, P., McAuliffe, R., Recous, S., Sndor, R., Smith, P., Snow, V., de Antoni Migliorati, M., Basso, B., Bhatia, A., Brilli, L., Doltra, J., Dorich, C. D., Doro, L., Fitton, N., Giacomini, S. J., Grant, B., Harrison, M. T., Jones, S. K., Kirschbaum, M. U. F., Klumpp, K., Laville, P., Lonard, J., Liebig, M., Lieffering, M., Martin, R., Massad, R. S., Meier, E., Merbold, L., Moore, A. D., Myrgiotis, V., Newton, P., Pattey, E., Rolinski, S., Sharp, J., Smith, W. N., Wu, L., & Zhang, Q. ( 2017 ). Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N 2 O emissions. Global Change Biology, 24 ( 2 ), e603 – e616. https://doi.org/10.1111/gcb.13965
dc.identifier.citedreferenceErisman, J. W., Sutton, M. A., Galloway, J. N., Klimont, Z., & Winiwarter, W. ( 2008 ). How a century of ammonia synthesis changed the world. Nature Geoscience, 1 ( 10 ), 636 – 639. https://doi.org/10.1038/ngeo325
dc.identifier.citedreferenceFAO ( 2017 ). World fertilizer trends and outlook to 2020. Food and Agriculture Organization of the United Nations (FAO).
dc.identifier.citedreferenceFossum, J.‐P. ( 2014 ). Calculation of carbon footprint of fertilizer production. http://www.yara.com/doc/122597_2013_Carbon_footprintof_AN_Method_of_calculation.pdf
dc.identifier.citedreferenceGellings, C. W., & Parmenter, K. E. ( 2016 ). Energy efficiency in fertilizer production and use. Efficient Use and Conservation of Energy; Gellings, CW, Ed.; Encyclopedia of Life Support Systems, 123‐136.
dc.identifier.citedreferenceGerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., & Grainger, C. A. ( 2003 ). Toward constraining regional‐scale fluxes of CO 2 with atmospheric observations over a continent: 2. Analysis of cobra data using a receptor‐oriented framework. Journal of Geophysical Research, 108 ( D24 ), 4757. https://doi.org/10.1029/2003JD003770
dc.identifier.citedreferenceGrant, R. F., Pattey, E., Goddard, T., Kryzanowski, L., & Puurveen, H. ( 2006 ). Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Science Society of America Journal, 70, 235 – 248. https://doi.org/10.2136/sssaj2005.0104
dc.identifier.citedreferenceGriffis, T. J., Chen, Z., Baker, J. M., Wood, J. D., Millet, D. B., Lee, X., Venterea, R. T., & Turner, P. A. ( 2017 ). Nitrous oxide emissions are enhanced in a warmer and wetter world. Proceedings of the National Academy of Sciences, 114 ( 45 ), 12,081 – 12,085. https://doi.org/10.1073/pnas.1704552114
dc.identifier.citedreferenceGvakharia, A., Kort, E. A., Smith, M. L., & Conley, S. ( 2018 ). Testing and evaluation of a new airborne system for continuous N 2 O, co 2, CO, and H 2 O measurements: The Frequent Calibration High‐performance Airborne Observation System (FCHAOS). Atmospheric Measurement Techniques, 11 ( 11 ), 6059 – 6074. https://doi.org/10.5194/amt‐11‐6059‐2018
dc.identifier.citedreferenceHeimann, D. C., Holmes Jr., R. R., & Harris, T. E. ( 2018 ). Flooding in the southern Midwestern United States, April–May 2017. Reston, VA: USGS.  http://pubs.er.usgs.gov/publication/ofr20181004
dc.identifier.citedreferenceKarion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., Davis, K., Deng, A., Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Ptron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T. I., & Tans, P. ( 2015 ). Aircraft‐based estimate of total methane emissions from the Barnett Shale region. Environmental Science & Technology, 49 ( 13 ), 8124 – 8131. https://doi.org/10.1021/acs.est.5b00217
dc.identifier.citedreferenceKarion, A., Sweeney, C., Wolter, S., Newberger, T., Chen, H., Andrews, A., Kofler, J., Neff, D., & Tans, P. ( 2013 ). Long‐term greenhouse gas measurements from aircraft. Atmospheric Measurement Techniques, 6 ( 3 ), 511 – 526. https://doi.org/10.5194/amt‐6‐511‐2013
dc.identifier.citedreferenceKort, E. A., Gvakharia, A., Smith, M. L., & Conley, S. ( 2018 ). Airborne data from the Fertilizer Emissions Airborne Study (FEAST). Nitrous oxide, carbon dioxide, carbon monoxide, methane, ozone, water vapor, and meteorological variables over the Mississippi River Valley. data set, University of Michigan Deep Blue Data Repository, https://doi.org/10.7302/Z2XK8CRG
dc.identifier.citedreferenceKort, E. A., Smith, M. L., Murray, L. T., Gvakharia, A., Brandt, A. R., Peischl, J., Ryerson, T. B., Sweeney, C., & Travis, K. ( 2016 ). Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift. Geophysical Research Letters, 43, 4617 – 4623. https://doi.org/10.1002/2016GL068703
dc.identifier.citedreferenceLemke, R. L., Liu, L., Baron, V. S., Malhi, S. S., & Farrell, R. E. ( 2018 ). Effect of crop and residue type on nitrous oxide emissions from rotations in the semi‐arid Canadian prairies. Canadian Journal of Soil Science, 98 ( 3 ), 508 – 518. https://doi.org/10.1139/cjss‐2018‐0001
dc.identifier.citedreferenceLin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., & Grainger, C. A. ( 2003 ). A near‐field tool for simulating the upstream influence of atmospheric observations: The stochastic time‐inverted lagrangian transport (stilt) model. Journal of Geophysical Research, 108 ( D16 ), 4493. https://doi.org/10.1029/2002JD003161
dc.identifier.citedreferenceLinn, D. M., & Doran, J. W. ( 1984 ). Effect of water‐filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267 – 1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x
dc.identifier.citedreferenceLu, C., & Tian, H. ( 2017 ). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data, 9 ( 1 ), 181 – 192. https://doi.org/10.5194/essd‐9‐181‐2017
dc.identifier.citedreferenceLund, D., Atwood, J. K. B., Benson, J., Goebel, J., Ingram, K., Johnson, M.‐V. V., Kellogg, R. L., Lemunyon, J., Norfleet, L., Steglich, E., Arnold, J., White, M., Gerik, T., Chinnasamy, S., Luzio, M. D., King, A., Moffitt, D. C., Narayanan, K., Pitts, T., Wang, X. S., Williams, J., & Plotkin., S. ( 2013 ). Assessment of the effects of conservation practices on cultivated cropland in the Lower Mississippi River Basin. Washington, DC: USDA NRCS.
dc.identifier.citedreferenceMarinho, E. V. A., DeLaune, R. D., & Lindau, C. W. ( 2004 ). Nitrous oxide flux from soybeans grown on Mississippi alluvial soil. Communications in Soil Science and Plant Analysis, 35 ( 1‐2 ), 1 – 8. https://doi.org/10.1081/CSS‐120027630
dc.identifier.citedreferenceMehrotra, S., Faloona, I., Suard, M., Conley, S., & Fischer, M. L. ( 2017 ). Airborne methane emission measurements for selected oil and gas facilities across California. Environmental Science & Technology, 51 ( 21 ), 12,981 – 12,987.
dc.identifier.citedreferenceMesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jovi, D., Woollen, J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G., Parrish, D., & Shi, W. ( 2006 ). North American regional reanalysis. Bulletin of the American Meteorological Society, 87 ( 3 ), 343 – 360. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at https://www.esrl.noaa.gov/psd/
dc.identifier.citedreferenceMonni, S., Perälä, P., & Regina, K. ( 2007 ). Uncertainty in agricultural CH 4 and N 2 O emissions from Finland—Possibilities to increase accuracy in emission estimates. Mitigation and Adaptation Strategies for Global Change, 12 ( 4 ), 545 – 571. https://doi.org/10.1007/s11027‐006‐4584‐4
dc.identifier.citedreferenceMyhre, G., Shindell, D., Bron, F.‐M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.‐F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. ( 2013 ). Anthropogenic and natural radiative forcing. In T. F. Stocker, et al. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659 – 740 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceNevison, C., Andrews, A., Thoning, K., Dlugokencky, E., Sweeney, C., Miller, S., Saikawa, E., Benmergui, J., Fischer, M., Mountain, M., & Nehrkorn, T. ( 2018 ). Nitrous oxide emissions estimated with the CarbonTracker Lagrange North American Regional Inversion Framework. Global Biogeochemical Cycles, 32, 463 – 485. https://doi.org/10.1002/2017GB005759
dc.identifier.citedreferenceNutrien ( 2018 ). Nutrien 2018 Fact Book. Saskatoon, Saskatchewan, Canada, https://www.nutrien.com/sites/default/files/uploads/2018‐01/Nutrien%20Fact%20Book%202018_1.pdf
dc.identifier.citedreferenceO’Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., & Bindlish, R. ( 2018 ). SMAP enhanced L3 radiometer global daily 9 km EASE‐grid soil moisture, Version 2 [L3, Passive, Day]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, [Accessed 10/31/2018].
dc.identifier.citedreferencePadgitt, M., Newton, D., Penn, R., & Sandretto, C. ( 2000 ). Production practices for major crops in U.S. agriculture, 1990–97 (262287): United States Department of Agriculture, Economic Research Service.  https://ideas.repec.org/p/ags/uerssb/262287.html
dc.identifier.citedreferenceParkin, T. B., & Kaspar, T. C. ( 2006 ). Nitrous oxide emissions from corn‐soybean systems in the Midwest. Journal of Environmental Quality, 35 ( 4 ), 1496 – 1506.
dc.identifier.citedreferenceParkin, T. B., Venterea, R., & Hargreaves, S. K. ( 2012 ). Calculating the detection limits of chamber‐based soil greenhouse gas flux measurements. Journal of Environmental Quality, 41, 705 – 15. https://doi.org/10.2134/jeq2011.0394
dc.identifier.citedreferencePattey, E., Blackburn, L. G., Strachan, I. B., Desjardins, R., & Dow, D. ( 2008 ). Spring thaw and growing season N 2 O emissions from a field planted with edible peas and a cover crop. Canadian Journal of Soil Science, 88 ( 2 ), 241 – 249. https://doi.org/10.4141/CJSS06035
dc.identifier.citedreferencePeischl, J., Ryerson, T. B., Aikin, K. C., Gouw, J. A., Gilman, J. B., Holloway, J. S., Lerner, B. M., Nadkarni, R., Neuman, J. A., Nowak, J. B., Trainer, M., Warneke, C., & Parrish, D. D. ( 2015 ). Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research: Atmospheres, 120, 2119 – 2139. https://doi.org/10.1002/2014JD022697
dc.identifier.citedreferenceRapson, T. D., & Dacres, H. ( 2014 ). Analytical techniques for measuring nitrous oxide. TrAC Trends in Analytical Chemistry, 54, 65 – 74. https://doi.org/10.1016/j.trac.2013.11.004
dc.identifier.citedreferenceRavishankara, A. R., Daniel, J. S., & Portmann, R. W. ( 2009 ). Nitrous oxide (N 2 O): The dominant ozone‐depleting substance emitted in the 21st century. Science, 326 ( 5949 ), 123 – 125. https://doi.org/10.1126/science.1176985
dc.identifier.citedreferenceReay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., & Crutzen, P. J. ( 2012 ). Global agriculture and nitrous oxide emissions. Nature Climate Change, 2 ( 6 ), 410 – 416. https://doi.org/10.1038/nclimate1458
dc.identifier.citedreferenceRodgers, C. D. ( 2000 ). Inverse methods for atmospheric sounding: Theory and practice (Vol. 2 ). World scientific.
dc.identifier.citedreferenceRömkens, M. J. M., Selim, H. M., Scott, H. D., Phillips, R. E., & Whisler, F. D. ( 1986 ). Physical characteristics of soils in the Southern Region: Captina, Gigger, Grenada, Loring, Olivier and Sharkey series. Southern Cooperative Series Bulletin, 264.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.