Show simple item record

Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations

dc.contributor.authorZhang, Zhimeng
dc.contributor.authorAdumitroaie, Virgil
dc.contributor.authorAllison, Michael
dc.contributor.authorArballo, John
dc.contributor.authorAtreya, Sushil
dc.contributor.authorBjoraker, Gordon
dc.contributor.authorBolton, Scott
dc.contributor.authorBrown, Shannon
dc.contributor.authorFletcher, Leigh N.
dc.contributor.authorGuillot, Tristan
dc.contributor.authorGulkis, Samuel
dc.contributor.authorHodges, Amoree
dc.contributor.authorIngersoll, Andrew
dc.contributor.authorJanssen, Michael
dc.contributor.authorLevin, Steven
dc.contributor.authorLi, Cheng
dc.contributor.authorLi, Liming
dc.contributor.authorLunine, Jonathan
dc.contributor.authorMisra, Sidharth
dc.contributor.authorOrton, Glenn
dc.contributor.authorOyafuso, Fabiano
dc.contributor.authorSteffes, Paul
dc.contributor.authorWong, Michael H.
dc.date.accessioned2020-10-01T23:29:11Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:29:11Z
dc.date.issued2020-09
dc.identifier.citationZhang, Zhimeng; Adumitroaie, Virgil; Allison, Michael; Arballo, John; Atreya, Sushil; Bjoraker, Gordon; Bolton, Scott; Brown, Shannon; Fletcher, Leigh N.; Guillot, Tristan; Gulkis, Samuel; Hodges, Amoree; Ingersoll, Andrew; Janssen, Michael; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Oyafuso, Fabiano; Steffes, Paul; Wong, Michael H. (2020). "Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations." Earth and Space Science 7(9): n/a-n/a.
dc.identifier.issn2333-5084
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/2027.42/162701
dc.description.abstractThe Juno spacecraft provides unique close‐up views of Jupiter underneath the synchrotron radiation belts while circling Jupiter in its 53‐day orbits. The microwave radiometer (MWR) onboard measures Jupiter thermal radiation at wavelengths between 1.37 and 50 cm, penetrating the atmosphere to a pressure of a few hundred bars and greater. The mission provides the first measurements of Jupiter’s deep atmosphere, down to ~250 bars in pressure, constraining the vertical distributions of its kinetic temperature and constituents. As a result, vertical structure models of Jupiter’s atmosphere may now be tested by comparison with MWR data. Taking into account the MWR beam patterns and observation geometries, we test several published Jupiter atmospheric models against MWR data. Our residual analysis confirms Li et al.’s (2017, https://doi.org/10.1002/2017GL073159) result that ammonia depletion persists down to 50–60 bars where ground‐based Very Large Array was not able to observe. We also present an extension of the study that iteratively improves the input model and generates Jupiter brightness temperature maps which best match the MWR data. A feature of Juno’s north‐to‐south scanning approach is that latitudinal structure is more easily obtained than longitudinal, and the creation of optimum two‐dimensional maps is addressed in this approach.Key PointsResidual analysis provides a direct method to compare any Jupiter atmosphere model with the MWR observationsThe iterative residual analysis process generates 2‐D Jupiter maps revealing the deep structures of upper atmosphere features
dc.publisherWiley‐Interscience Publication
dc.subject.othergiant planets
dc.subject.otheratmosphere
dc.subject.otherJupiter
dc.subject.otherJuno
dc.subject.othermicrowave radiometer
dc.titleResidual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelSpace Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162701/2/ess2634_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162701/1/ess2634.pdfen_US
dc.identifier.doi10.1029/2020EA001229
dc.identifier.sourceEarth and Space Science
dc.identifier.citedreferenceHelled, R., & Lunine, J. ( 2014 ). Measuring Jupiter’s water abundance by Juno: The link between interior and formation models. Monthly Notices of the Royal Astronomical Society, 441 ( 3 ), 2273 – 2279. https://doi.org/10.1093/mnras/stu516
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary data services of NASA’s Navigation and Ancillary Information Facility. Planetary and Space Science, 44 ( 1 ), 65 – 70. https://doi.org/10.1016/0032-0633(95)00107-7
dc.identifier.citedreferenceAdumitroaie, V., Levin, S. M., Costa, D. S., Gulkis, S., & Jansssen, M. A. ( 2016 ). Towards a fast background radiation subtraction technique for the Juno mission. IEEE Aerospace Conference, 1 – 11. https://doi.org/10.1109/AERO.2016.7500862
dc.identifier.citedreferenceAsplund, M., Grevesse, N., Sauval, A. J., & Scott, P. ( 2009 ). The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics, 47 ( 1 ), 481 – 522. https://doi.org/10.1146/annurev.astro.46.060407.145222
dc.identifier.citedreferenceBjoraker, G. L., Larson, H. P., & Kunde, V. G. ( 1986 ). The abundance and distribution of water vapor in Jupiter’s atmosphere. The Astrophysical Journal, 311, 1058 – 1072. https://doi.org/10.1086/164842
dc.identifier.citedreferenceBjoraker, G. L., Wong, M. H., de Pater, I., & Ádámkovics, M. ( 2015 ). Jupiter’s deep cloud structure revealed using Keck observations of spectrally resolved line shapes. The Astrophysical Journal, 810 ( 2 ), 122 (10 pp). https://ui.adsabs.harvard.edu/abs/2015ApJ…810..122B, https://doi.org/10.1088/0004-637X/810/2/122
dc.identifier.citedreferenceBjoraker, G. L., Wong, M. H., de Pater, I., Hewagama, T., Ádámkovics, M., & Orton, G. S. ( 2018 ). The gas composition and deep cloud structure of Jupiter’s Great Red Spot. The Astronomical Journal, 156 ( 3 ), 101 (15 pp). https://ui.adsabs.harvard.edu/abs/2018AJ.…156..101B, https://doi.org/10.3847/1538-3881/aad186
dc.identifier.citedreferenceBolton, S. J., Levin, S., Wong, M. H., Guillot, T., Kaspi, Y., Arballo, J., Atreya, S., Becker, H., Brown, S., Fletcher, L., Galanti, E., Gulkis, S., Janssen, M., Ingersoll, A., Li, C., Lunine, J., Orton, G., Oyafuso, F., Steffes, P., Stevenson, D., Waite, H., & Zhang, Z. ( 2020 ). The Depth of Jupiter’s Storms.
dc.identifier.citedreferenceBolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., Orton, G. S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S. K., Mokashi, P., Thorne, R., & Thorpe, R. ( 2017 ). The Juno mission. Space Science Reviews, 213 ( 1‐4 ), 5 – 37. https://doi.org/10.1007/s11214-017-0429-6
dc.identifier.citedreferenceBurke, B. F., & Franklin, K. L. ( 1955 ). Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60 ( 2 ), 213 – 217. https://doi.org/10.1029/JZ060i002p00213
dc.identifier.citedreferencede Pater, I., Dunn, D., Romani, P., & Zahnle, K. ( 2001 ). Reconciling Galileo probe data and ground‐based radio observations of ammonia on Jupiter. Icarus, 149, 66 – 78. https://doi.org/10.1006/icar.2000.6527
dc.identifier.citedreferencede Pater, I., & Massie, S. T. ( 1985 ). Models of the millimeter‐centimeter spectra of the giant planets. Icarus, 62 ( 1 ), 143 – 171. https://doi.org/10.1016/0019-1035(85)90177-0
dc.identifier.citedreferencede Pater, I., Sault, R. J., Butler, B., DeBoer, D., & Wong, M. H. ( 2016 ). Peering through Jupiter’s clouds with radio spectral imaging. Science June, 03, 352 ( 6290 ), 1198 – 1201. https://doi.org/10.1126/science.aaf2210
dc.identifier.citedreferencede Pater, I., Sault, R. J., Wong, M. H., Fletcher, L. N., DeBoer, D., & Butler, B. ( 2019 ). Jupiter’s ammonia distribution derived from VLA maps at 3–37 GHz. Icarus, 322, 168 – 191. https://doi.org/10.1016/j.icarus.2018.11.024
dc.identifier.citedreferenceFletcher, L. N., Orton, G. S., Greathouse, T. K., Rogers, J. H., Zhang, Z., Oyafuso, F. A., Eichstadt, G., Melin, H., Li, C., Levin, S. M., Bolton, S., Janssen, M., Metting, H.‐J., Grassi, D., Mura, A., & Adriani, A. ( 2020 ). Jupiter’s equatorial plumes and hot spots: Spectral mapping from Gemini/TEXES and Juno/MWR. JGR Planets, 125 ( 8 ). https://doi.org/10.1029/2020JE006399
dc.identifier.citedreferenceFletcher, L. N., Orton, G. S., Yanamandra‐Fisher, P., Fisher, B. M., Parrish, P. D., & Irwin, P. G. J. ( 2009 ). Retrievals of atmospheric variables on the gas giants from ground‐based mid‐infrared imaging. Icarus, 200 ( 1 ), 154 – 175. https://doi.org/10.1016/j.icarus.2008.11.019
dc.identifier.citedreferenceFolkner, W. M., Woo, R., & Nandi, S. ( 1998 ). Ammonia abundance in Jupiter’s atmosphere derived from the attenuation of the Galileo probe’s radio signal. Journal of Geophysical Research, 103 ( E10 ), 22,847 – 22,855. https://doi.org/10.1029/98JE01635
dc.identifier.citedreferenceFouchet, T., Lellouch, E., BÅLezard, B., Encrenaz, T., Drossart, P., Feuchtgruber, H., & de Graauw, T. ( 2000 ). ISO‐SWS observations of Jupiter: Measurement of the ammonia tropospheric profile and of the 15 N/ 14 N isotopic ratio. Icarus, 143 ( 2 ), 223 – 243. https://doi.org/10.1006/icar.1999.6255
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Dinelli, B. M., Sindoni, G., Turrini, D., Filacchione, G., Migliorini, A., Moriconi, M. L., Tosi, F., Noschese, R., Cicchetti, A., Altieri, F., Fabiano, F., Piccioni, G., Stefani, S., Atreya, S., Lunine, J., Orton, G., Ingersoll, A., Bolton, S., Levin, S., Connerney, J., Olivieri, A., & Amoroso, M. ( 2017 ). Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 44, 4615 – 4624. https://ui.adsabs.harvard.edu/abs/2017GeoRL..44.4615G, https://doi.org/10.1002/2017GL072841
dc.identifier.citedreferenceHanley, T. R., Steffes, P. G., & Karpowicz, B. M. ( 2009 ). A new model of the hydrogen and helium‐broadened microwave opacity of ammonia based on extensive laboratory measurements. Icarus, 202 ( 1 ), 316 – 335. https://doi.org/10.1016/j.icarus.2009.02.002
dc.identifier.citedreferenceJanssen, M. A., Ingersoll, A. P., Allison, M. D., Gulkis, S., Laraia, A. L., Baines, K. H., Edgington, S. G., Anderson, Y. Z., Kelleher, K., & Oyafuso, F. A. ( 2013 ). Saturn’s thermal emission at 2.2‐cm wavelength as imaged by the Cassini RADAR radiometer. Icarus, 226 ( 1 ), 522 – 535. https://doi.org/10.1016/j.icarus.2013.06.008
dc.identifier.citedreferenceJanssen, M. A. ( 1993 ). Book: Atmospheric remote sensing by microwave radiometer. New York, NY: Wiley‐Interscience Publication.
dc.identifier.citedreferenceJanssen, M. A., Oswald, J. E., Brown, S. T., Gulkis, S., Levin, S. M., Bolton, S. J., Allison, M. D., Atreya, S. K., Gautier, D., Ingersoll, A. P., Lunine, J. I., Orton, G. S., Owen, T. C., Steffes, P. G., Adumitroaie, V., Bellotti, A., Jewell, L. A., Li, C., Li, L., Misra, S., Oyafuso, F. A., Santos Costa, D., Sarkissian, E., Williamson, R., Arballo, J. K., Kitiyakara, A., Ulloa Severino, A., Chen, J. C., Maiwald, F. W., Sahakian, A. S., Pingree, P. J., Lee, K. A., Mazer, A. S., Redick, R., Hodges, R. E., Hughes, R. C., Bedrosian, G., Dawson, D. E., Hatch, W. A., Russell, D. S., Chamberlain, N. F., Zawadski, M. S., Khayatian, B., Franklin, B. R., Conley, H. A., Kempenaar, J. G., Loo, M. S., Sunada, E. T., Vorperion, V., & Wang, C. C. M. W. R. ( 2017 ). Microwave radiometer for the Juno mission to Jupiter. Space Science Reviews, 213 ( 1–4 ), 139 – 185. https://doi.org/10.1007/s11214-017-0349-5
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., Lunine, J., Steffes, P., Brown, S., Guillot, T., Allison, M., Arballo, J., Bellotti, A., Adumitroaie, V., Gulkis, S., Hodges, A., Li, L., Misra, S., Orton, G., Oyafuso, F., Santos‐Costa, D., Waite, H., & Zhang, Z. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4, published February 10. https://doi.org/10.1038/s41550-020-1009-3
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., Allison, M., Arballo, J., Bellotti, A., Brown, S., Ewald, S., Jewell, L., Misra, S., Orton, G., Oyafuso, F., Steffes, P., & Williamson, R. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceOyafuso, F., Levin, S., Orton, G., Brown, S., Adumitroaie, V., Janssen, M., Wong, M. H., Fletcher, L. N., Steffs, P., Li, C., Gulkis, S., Atreya, S., Misra, S., & Bolton, S. ( 2020 ). Angular Dependence and Spatial Distribution of Jupiter’s Centimeter‐Wave Thermal Emission from Juno’s Microwave Radiometer. Earth and Space Science.
dc.identifier.citedreferenceNiemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., & Way, S. H. ( 1998 ). The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. Journal of Geophysical Research: Planets, 103 ( E10 ), 22,831 – 22,845. https://doi.org/10.1029/98je01050
dc.identifier.citedreferenceRohlfs, K., & Wilson, T. ( 1999 ). Book: Tools of radio astronomy ( 3rd ed. ). Berlin Heidelberg: Springer‐Verlag.
dc.identifier.citedreferenceSantos‐Costa, D., Adumitroaie, V., Ingersoll, A., Gulkis, S., Janssen, M. A., Levin, S. M., Oyafuso, F., Brown, S., Williamson, R., Bolton, S. J., & Connerney, J. E. P. ( 2017 ). First look at Jupiter’s synchrotron emission from Juno’s perspective. Geophysical Research Letters, 44, 8676 – 8684. https://ui.adsabs.harvard.edu/abs/2017GeoRL..44.8676S, https://doi.org/10.1002/2017GL072836
dc.identifier.citedreferenceSromovsky, L. A., Collard, A. D., Fry, P. M., Orton, G. S., Lemmon, M. T., Tomasko, M. G., & Freedman, R. S. ( 1998 ). Galileo probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere. Journal of Geophysical Research, 103 ( 22 ), 22,929 – 22,977. https://doi.org/10.1029/98je01048
dc.identifier.citedreferenceWong, M. H., Mahaffy, P. R., Atreya, S. K., Niemann, H. B., & Owen, T. C. ( 2004 ). Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus, 171 ( 1 ), 153 – 170. https://doi.org/10.1016/j.icarus.2004.04.010
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.