On the Increase of Climate Sensitivity and Cloud Feedback With Warming in the Community Atmosphere Models
Zhu, Jiang; Poulsen, Christopher J.
2020-09-28
View/ Open
Citation
Zhu, Jiang; Poulsen, Christopher J. (2020). "On the Increase of Climate Sensitivity and Cloud Feedback With Warming in the Community Atmosphere Models." Geophysical Research Letters 47(18): n/a-n/a.
Abstract
Modeling and paleoclimate proxy‐based studies suggest that equilibrium climate sensitivity (ECS) depends on the background climate state, though the reason is not thoroughly understood. Here we study the state dependence of ECS over a large range of global mean surface temperature (GMST) in the Community Atmosphere Model (CAM) Versions 4, 5, and 6 by varying atmospheric CO2 concentrations. We find a robust increase of ECS with GMST in all three models, albeit at different rates, which is primarily attributed to strengthening of the shortwave cloud feedback (λcld) at both high and low latitudes. Over high latitudes, increasing GMST leads to a reduction in the cloud ice fraction, weakening the (negative) cloud‐phase feedback due to the phase transition of cloud ice to liquid and thereby strengthening λcld. Over low‐latitude regions, increasing GMST strengthens λcld likely through the nonlinear increase in water vapor, which causes low‐cloud thinning through thermodynamic and radiative processes.Plain Language SummaryEquilibrium climate sensitivity (ECS) is defined as the equilibrium increase in global mean temperature as a result of a doubling of atmospheric CO2 concentration. The latest assessment by the Intergovernmental Panel on Climate Change reported a likely ECS range of 1.5–4.5°C. Narrowing the ECS range is of paramount importance for prediction of future warming. Earth’s surface has experienced prolonged periods of large magnitude warming in the geological past, which provide important empirical information on ECS. To quantitatively use the paleoclimate information, we need a complete understanding of how ECS may depend on the background climate. In this study, we investigate the physical mechanisms responsible for the state dependence of ECS using three climate models that have distinct model physics. In all three models, we find that ECS grows as the background climate warms; that is, a warmer climate is more sensitive to external forcing. We attribute the increase of ECS to both high‐ and low‐latitude cloud processes. Over high latitudes, cloud ice fraction decreases with global warming, weakening the potential for mixed‐phase clouds to reflect solar radiation and amplifying surface warming. Over low latitudes, global warming enhances the efficiency of processes that make clouds less opaque, again, amplifying surface warming.Key PointsECS increases with CO2‐induced global warming in CAM6, CAM5, and CAM4 and is primarily attributed to the strengthening of cloud feedbackHigh‐latitude λcld strengthens with warming due to a decrease of cloud ice fraction and a weakening of the negative cloud‐phase feedbackLow‐latitude λcld strengthening is linked to cloud thinning over subsidence regions likely caused by cloud interactions with water vaporPublisher
National Academy of Sciences Wiley Periodicals, Inc.
ISSN
0094-8276 1944-8007
Other DOIs
Types
Article
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.