Show simple item record

On the Increase of Climate Sensitivity and Cloud Feedback With Warming in the Community Atmosphere Models

dc.contributor.authorZhu, Jiang
dc.contributor.authorPoulsen, Christopher J.
dc.date.accessioned2020-10-01T23:29:56Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:29:56Z
dc.date.issued2020-09-28
dc.identifier.citationZhu, Jiang; Poulsen, Christopher J. (2020). "On the Increase of Climate Sensitivity and Cloud Feedback With Warming in the Community Atmosphere Models." Geophysical Research Letters 47(18): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/162725
dc.description.abstractModeling and paleoclimate proxy‐based studies suggest that equilibrium climate sensitivity (ECS) depends on the background climate state, though the reason is not thoroughly understood. Here we study the state dependence of ECS over a large range of global mean surface temperature (GMST) in the Community Atmosphere Model (CAM) Versions 4, 5, and 6 by varying atmospheric CO2 concentrations. We find a robust increase of ECS with GMST in all three models, albeit at different rates, which is primarily attributed to strengthening of the shortwave cloud feedback (λcld) at both high and low latitudes. Over high latitudes, increasing GMST leads to a reduction in the cloud ice fraction, weakening the (negative) cloud‐phase feedback due to the phase transition of cloud ice to liquid and thereby strengthening λcld. Over low‐latitude regions, increasing GMST strengthens λcld likely through the nonlinear increase in water vapor, which causes low‐cloud thinning through thermodynamic and radiative processes.Plain Language SummaryEquilibrium climate sensitivity (ECS) is defined as the equilibrium increase in global mean temperature as a result of a doubling of atmospheric CO2 concentration. The latest assessment by the Intergovernmental Panel on Climate Change reported a likely ECS range of 1.5–4.5°C. Narrowing the ECS range is of paramount importance for prediction of future warming. Earth’s surface has experienced prolonged periods of large magnitude warming in the geological past, which provide important empirical information on ECS. To quantitatively use the paleoclimate information, we need a complete understanding of how ECS may depend on the background climate. In this study, we investigate the physical mechanisms responsible for the state dependence of ECS using three climate models that have distinct model physics. In all three models, we find that ECS grows as the background climate warms; that is, a warmer climate is more sensitive to external forcing. We attribute the increase of ECS to both high‐ and low‐latitude cloud processes. Over high latitudes, cloud ice fraction decreases with global warming, weakening the potential for mixed‐phase clouds to reflect solar radiation and amplifying surface warming. Over low latitudes, global warming enhances the efficiency of processes that make clouds less opaque, again, amplifying surface warming.Key PointsECS increases with CO2‐induced global warming in CAM6, CAM5, and CAM4 and is primarily attributed to the strengthening of cloud feedbackHigh‐latitude λcld strengthens with warming due to a decrease of cloud ice fraction and a weakening of the negative cloud‐phase feedbackLow‐latitude λcld strengthening is linked to cloud thinning over subsidence regions likely caused by cloud interactions with water vapor
dc.publisherNational Academy of Sciences
dc.publisherWiley Periodicals, Inc.
dc.subject.otherequilibrium climate sensitivity
dc.subject.otherstate dependence
dc.subject.othercloud feedback
dc.titleOn the Increase of Climate Sensitivity and Cloud Feedback With Warming in the Community Atmosphere Models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162725/3/grl61173_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162725/2/grl61173.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162725/1/grl61173-sup-0001-ECS_CloudFeedbacks.SI.Revised.pdfen_US
dc.identifier.doi10.1029/2020GL089143
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMitchell, J. F. B., Senior, C. A., & Ingram, W. J. ( 1989 ). CO2 and climate: A missing feedback? Nature, 341 ( 6238 ), 132 – 134. https://doi.org/10.1038/341132a0
dc.identifier.citedreferenceKnutti, R., Rugenstein, M. A. A., & Hegerl, G. C. ( 2017 ). Beyond equilibrium climate sensitivity. Nature Geoscience, 10 ( 10 ), 727 – 736. https://doi.org/10.1038/ngeo3017
dc.identifier.citedreferenceKutzbach, J. E., He, F., Vavrus, S. J., & Ruddiman, W. F. ( 2013 ). The dependence of equilibrium climate sensitivity on climate state: Applications to studies of climates colder than present. Geophysical Research Letters, 40, 3721 – 3726. https://doi.org/10.1002/grl.50724
dc.identifier.citedreferenceManabe, S., & Wetherald, R. T. ( 1967 ). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24 ( 3 ), 241 – 259. https://doi.org/10.1175/1520-0469(1967)024%3C0241:TEOTAW%3E2.0.CO
dc.identifier.citedreferenceMauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S., Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann, S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz‐de‐la‐Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S., Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner, K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E. M. S., Nam, C. C. W., Notz, D., Nyawira, S. S., Paulsen, H., Peters, K., Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S., Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H., Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens, B., Storch, J. S., Tian, F., Voigt, A., Vrese, P., Wieners, K. H., Wilkenskjeld, S., Winkler, A., & Roeckner, E. ( 2019 ). Developments in the MPI‐M Earth System Model Version 1.2 (MPI‐ESM 1.2) and its response to increasing CO 2. Journal of Advances in Modeling Earth Systems, 11, 998 – 1038. https://doi.org/10.1029/2018MS001400
dc.identifier.citedreferenceMcCoy, D. T., Hartmann, D. L., & Grosvenor, D. P. ( 2014 ). Observed Southern Ocean cloud properties and shortwave reflection. Part II: Phase changes and low cloud feedback. Journal of Climate, 27 ( 23 ), 8858 – 8868. https://doi.org/10.1175/JCLI-D-14-00288.1
dc.identifier.citedreferenceMcCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M. D., & Storelvmo, T. ( 2016 ). On the relationships among cloud cover, mixed‐phase partitioning, and planetary albedo in GCMs. Journal of Advances in Modeling Earth Systems, 8, 650 – 668. https://doi.org/10.1002/2015MS000589
dc.identifier.citedreferenceMeraner, K., Mauritsen, T., & Voigt, A. ( 2013 ). Robust increase in equilibrium climate sensitivity under global warming. Geophysical Research Letters, 40, 5944 – 5948. https://doi.org/10.1002/2013GL058118
dc.identifier.citedreferenceMyers, T. A., & Norris, J. R. ( 2013 ). Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. Journal of Climate, 26 ( 19 ), 7507 – 7524. https://doi.org/10.1175/jcli-d-12-00736.1
dc.identifier.citedreferencePruppacher, H. R., & Klett, J. D. ( 1997 ). Microphysics of clouds and precipitation ( second ed. ). Boston, MA: Kluwer Academic Publishers.
dc.identifier.citedreferenceSchneider, T., Kaul, C. M., & Pressel, K. G. ( 2019 ). Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nature Geoscience, 12 ( 3 ), 163 – 167. https://doi.org/10.1038/s41561-019-0310-1
dc.identifier.citedreferenceSoden, B. J., & Held, I. M. ( 2006 ). An assessment of climate feedbacks in coupled ocean–atmosphere models. Journal of Climate, 19 ( 14 ), 3354 – 3360. https://doi.org/10.1175/JCLI3799.1
dc.identifier.citedreferenceTan, I., Storelvmo, T., & Zelinka, M. D. ( 2016 ). Observational constraints on mixed‐phase clouds imply higher climate sensitivity. Science, 352 ( 6282 ), 224 – 227. https://doi.org/10.1126/science.aad5300
dc.identifier.citedreferenceTaylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., Mitchell, J. F. B., & Webb, M. J. ( 2007 ). Estimating shortwave radiative forcing and response in climate models. Journal of Climate, 20 ( 11 ), 2530 – 2543. https://doi.org/10.1175/JCLI4143.1
dc.identifier.citedreferencevan der Dussen, J. J., de Roode, S. R., Dal Gesso, S., & Siebesma, A. P. ( 2015 ). An LES model study of the influence of the free tropospheric thermodynamic conditions on the stratocumulus response to a climate perturbation. Journal of Advances in Modeling Earth Systems, 7, 670 – 691. https://doi.org/10.1002/2014MS000380
dc.identifier.citedreferenceWolf, E. T., Haqq‐Misra, J., & Toon, O. B. ( 2018 ). Evaluating climate sensitivity to CO 2 across Earth’s history. Journal of Geophysical Research: Atmospheres, 123, 11,861 – 11,874. https://doi.org/10.1029/2018JD029262
dc.identifier.citedreferenceWood, R., & Bretherton, C. S. ( 2006 ). On the relationship between stratiform low cloud cover and lower‐tropospheric stability. Journal of Climate, 19 ( 24 ), 6425 – 6432. https://doi.org/10.1175/JCLI3988.1
dc.identifier.citedreferenceZelinka, M. D., Myers, T. A., McCoy, D. T., Po‐Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. A., & Taylor, K. E. ( 2020 ). Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47, e2019GL085782. https://doi.org/10.1029/2019GL085782
dc.identifier.citedreferenceZhu, J., & Poulsen, C. J. ( 2019 ). Quantifying the cloud particle‐size feedback in an earth system model. Geophysical Research Letters, 46, 10,910 – 10,917. https://doi.org/10.1029/2019GL083829
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Otto‐Bliesner, B. L. ( 2020 ). High climate sensitivity in CMIP6 model not supported by paleoclimate. Nature Climate Change, 10 ( 5 ), 378 – 379. https://doi.org/10.1038/s41558-020-0764-6
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Tierney, J. E. ( 2019 ). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5, eaax1874. https://doi.org/10.1126/sciadv.aax1874
dc.identifier.citedreferenceBetts, A. K., & Harshvardhan ( 1987 ). Thermodynamic constraint on the cloud liquid water feedback in climate models. Journal of Geophysical Research, 92 ( D7 ), 8483 – 8485. https://doi.org/10.1029/JD092iD07p08483
dc.identifier.citedreferenceBony, S., & Dufresne, J.‐L. ( 2005 ). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32, L20806. https://doi.org/10.1029/2005GL023851
dc.identifier.citedreferenceBretherton, C. S. ( 2015 ). Insights into low‐latitude cloud feedbacks from high‐resolution models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373 ( 2054 ), 20140415. https://doi.org/10.1098/rsta.2014.0415
dc.identifier.citedreferenceBretherton, C. S., Blossey, P. N., & Jones, C. R. ( 2013 ). Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single‐LES exploration extending the CGILS cases. Journal of Advances in Modeling Earth Systems, 5, 316 – 337. https://doi.org/10.1002/jame.20019
dc.identifier.citedreferenceByrne, B., & Goldblatt, C. ( 2014 ). Radiative forcing at high concentrations of well‐mixed greenhouse gases. Geophysical Research Letters, 41, 152 – 160. https://doi.org/10.1002/2013GL058456
dc.identifier.citedreferenceCaballero, R., & Huber, M. ( 2013 ). State‐dependent climate sensitivity in past warm climates and its implications for future climate projections. Proceedings of the National Academy of Sciences, 110 ( 35 ), 14,162 – 14,167. https://doi.org/10.1073/pnas.1303365110
dc.identifier.citedreferenceCeppi, P., Brient, F., Zelinka, M. D., & Hartmann, D. L. ( 2017 ). Cloud feedback mechanisms and their representation in global climate models. WIREs Climate Change, 8, e465. https://doi.org/10.1002/wcc.465
dc.identifier.citedreferenceCeppi, P., & Gregory, J. M. ( 2017 ). Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proceedings of the National Academy of Sciences, 114 ( 50 ), 13,126 – 13,131. https://doi.org/10.1073/pnas.1714308114
dc.identifier.citedreferenceCess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D., Déqué, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., Kiehl, J. T., Lacis, A. A., Le Treut, H., Li, Z.‐. X., Liang, X.‐. Z., McAvaney, B. J., Meleshko, V. P., Mitchell, J. F. B., Morcrette, J.‐. J., Randall, D. A., Rikus, L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, A., Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., & Zhang, M.‐. H. ( 1990 ). Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. Journal of Geophysical Research, 95 ( D10 ), 16,601 – 16,615. https://doi.org/10.1029/JD095iD10p16601
dc.identifier.citedreferenceCharney, J. G., Arakawa, A., Baker, D. J., Bolin, B., Dickinson, R. E., Goody, R. M., Leith, C. E., Stommel, H. M., & Wunsch, C. I. ( 1979 ). Carbon dioxide and climate: A scientific assessment. Washington, DC: National Academy of Sciences.
dc.identifier.citedreferenceChristensen, M. W., Carrió, G. G., Stephens, G. L., & Cotton, W. R. ( 2013 ). Radiative impacts of free‐tropospheric clouds on the properties of marine stratocumulus. Journal of the Atmospheric Sciences, 70 ( 10 ), 3102 – 3118. https://doi.org/10.1175/JAS-D-12-0287.1
dc.identifier.citedreferenceColman, R. ( 2003 ). A comparison of climate feedbacks in general circulation models. Climate Dynamics, 20 ( 7‐8 ), 865 – 873. https://doi.org/10.1007/s00382-003-0310-z
dc.identifier.citedreferenceColman, R., & McAvaney, B. ( 2009 ). Climate feedbacks under a very broad range of forcing. Geophysical Research Letters, 36, L01702. https://doi.org/10.1029/2008GL036268
dc.identifier.citedreferenceKay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C. ( 2016 ). Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate, 29 ( 12 ), 4617 – 4636. https://doi.org/10.1175/JCLI-D-15-0358.1
dc.identifier.citedreferenceDanabasoglu, G., Lamarque, J.‐F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto‐Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox‐Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., & Strand, W. G. ( 2020 ). The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916. https://doi.org/10.1029/2019MS001916
dc.identifier.citedreferenceEastman, R., & Wood, R. ( 2018 ). The competing effects of stability and humidity on subtropical stratocumulus entrainment and cloud evolution from a Lagrangian perspective. Journal of the Atmospheric Sciences, 75 ( 8 ), 2563 – 2578. https://doi.org/10.1175/jas-d-18-0030.1
dc.identifier.citedreferenceErfani, E., & Burls, N. J. ( 2019 ). The strength of low‐cloud feedbacks and tropical climate: A CESM sensitivity study. Journal of Climate, 32 ( 9 ), 2497 – 2516. https://doi.org/10.1175/JCLI-D-18-0551.1
dc.identifier.citedreferenceFrey, W. R., & Kay, J. E. ( 2018 ). The influence of extratropical cloud phase and amount feedbacks on climate sensitivity. Climate Dynamics, 50 ( 7–8 ), 3097 – 3116. https://doi.org/10.1007/s00382-017-3796-5
dc.identifier.citedreferenceGettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., Lamarque, J. F., Fasullo, J. T., Bailey, D. A., Lawrence, D. M., & Mills, M. J. ( 2019 ). High climate sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 46, 8329 – 8337. https://doi.org/10.1029/2019GL083978
dc.identifier.citedreferenceGettelman, A., Kay, J. E., & Shell, K. M. ( 2012 ). The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. Journal of Climate, 25 ( 5 ), 1453 – 1469. https://doi.org/10.1175/JCLI-D-11-00197.1
dc.identifier.citedreferenceGettelman, A., & Sherwood, S. C. ( 2016 ). Processes responsible for cloud feedback. Current Climate Change Reports, 2 ( 4 ), 179 – 189. https://doi.org/10.1007/s40641-016-0052-8
dc.identifier.citedreferenceGrise, K. M., & Polvani, L. M. ( 2014 ). Southern hemisphere cloud‐dynamics biases in CMIP5 models and their implications for climate projections. Journal of Climate, 27 ( 15 ), 6074 – 6092. https://doi.org/10.1175/JCLI-D-14-00113.1
dc.identifier.citedreferenceHansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., & Zhang, S. ( 2005 ). Efficacy of climate forcings. Journal of Geophysical Research, 110, D18104. https://doi.org/10.1029/2005JD005776
dc.identifier.citedreferenceHansen, J., Sato, M., Russell, G., & Kharecha, P. ( 2013 ). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20120294. https://doi.org/10.1098/rsta.2012.0294
dc.identifier.citedreferenceHartmann, D. L., & Larson, K. ( 2002 ). An important constraint on tropical cloud‐climate feedback. Geophysical Research Letters, 29 ( 20 ), 1951. https://doi.org/10.1029/2002GL015835
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., & Marshall, S. ( 2013 ). The Community Earth System Model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 – 1360. https://doi.org/10.1175/BAMS-D-12-00121.1
dc.identifier.citedreferenceIPCC ( 2013 ). In T. F. Stocker, (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
dc.identifier.citedreferenceJiang, J. H., Su, H., Zhai, C., Perun Vincent, S., Del Genio, A., Nazarenko, L. S., Doner, L. J., Horowitz, L., Seman, C., Cole, J., Gettelman, A., Ringer, M. A., Rotstayn, L., Jeffrey, S., Wu, T., Brient, F., Dufresne, J.‐. L., Kawai, H., Koshiro, T., Watanabe, M., LÉcuyer, T. S., Volodin, E. M., Iversen, T., Drange, H., Mesquita, M. D. S., Read, W. G., Waters, J. W., Tian, B., Teixeira, J., & Stephens Graeme, L. ( 2012 ). Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A‐Train” satellite observations. Journal of Geophysical Research, 117, D14105. https://doi.org/10.1029/2011JD017237
dc.identifier.citedreferenceJonko, A. K., Shell, K. M., Sanderson, B. M., & Danabasoglu, G. ( 2013 ). Climate feedbacks in CCSM3 under changing CO 2 forcing. Part II: Variation of climate feedbacks and sensitivity with forcing. Journal of Climate, 26 ( 9 ), 2784 – 2795. https://doi.org/10.1175/JCLI-D-12-00479.1
dc.identifier.citedreferenceKawai, H., Koshiro, T., & Webb, M. J. ( 2017 ). Interpretation of factors controlling low cloud cover and low cloud feedback using a unified predictive index. Journal of Climate, 30 ( 22 ), 9119 – 9131. https://doi.org/10.1175/JCLI-D-16-0825.1
dc.identifier.citedreferenceKay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., Gettelman, A., Eaton, B., Boyle, J., Marchand, R., & Ackerman, T. P. ( 2012 ). Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. Journal of Climate, 25 ( 15 ), 5190 – 5207. https://doi.org/10.1175/JCLI-D-11-00469.1
dc.identifier.citedreferenceKlein, S. A., Hall, A., Norris, J. R., & Pincus, R. ( 2017 ). Low‐cloud feedbacks from cloud‐controlling factors: A review. Surveys in Geophysics, 38 ( 6 ), 1307 – 1329. https://doi.org/10.1007/s10712-017-9433-3
dc.identifier.citedreferenceKlein, S. A., Zhang, Y., Zelinka, M. D., Pincus, R., Boyle, J., & Gleckler, P. J. ( 2013 ). Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. Journal of Geophysical Research: Atmospheres, 118, 1329 – 1342. https://doi.org/10.1002/jgrd.50141
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.