Show simple item record

MESSENGER Observations of Flow Braking and Flux Pileup of Dipolarizations in Mercury’s Magnetotail: Evidence for Current Wedge Formation

dc.contributor.authorDewey, Ryan M.
dc.contributor.authorSlavin, James A.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorAzari, Abigail R.
dc.contributor.authorSun, Weijie
dc.date.accessioned2020-10-01T23:31:35Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-10-01T23:31:35Z
dc.date.issued2020-09
dc.identifier.citationDewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Azari, Abigail R.; Sun, Weijie (2020). "MESSENGER Observations of Flow Braking and Flux Pileup of Dipolarizations in Mercury’s Magnetotail: Evidence for Current Wedge Formation." Journal of Geophysical Research: Space Physics 125(9): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/162780
dc.description.abstractSimilar to Earth, Mercury’s magnetotail experiences frequent dipolarization of the magnetic field. These rapid (~2 s) increases in the northward component of the tail field (ΔBz ~ 30 nT) at Mercury are associated with fast sunward flows (~200 km/s) that enhance local magnetic field convection. Differences between the two magnetospheres, namely Mercury’s smaller spatiotemporal scales and lack of an ionosphere, influence the dynamics of dipolarizations in these magnetotails. At Earth, the braking of fast dipolarization flows near the inner magnetosphere accumulates magnetic flux and develops the substorm current wedge. At Mercury, flow braking and flux pileup remain open topics. In this work, we develop an automated algorithm to identify dipolarizations, which allows for statistical examination of flow braking and flux pileup in Mercury’s magnetotail. We find that near the inner edge of the plasma sheet, steep magnetic pressure gradients cause substantial braking of fast dipolarization flows. The dipolarization frequency and sunward flow speed decrease significantly within a region ~500 km thick located at ~900 km altitude above Mercury’s local midnight surface. Due to the close proximity of the braking region to the planet, we estimate that ~10–20% of dipolarizations may reach the nightside surface of the planet. The remaining dipolarizations exhibit prolonged statistical flux pileup within the braking region similar to large‐scale dipolarization of Earth’s inner magnetosphere. The existence of flow braking and flux pileup at Mercury indicates that a current wedge may form, although the limitations imposed by Mercury’s magnetosphere require the braking of multiple, continuous dipolarizations for current wedge formation.Key PointsDipolarizations in Mercury’s magnetotail encounter strong magnetic pressure gradients near the planet that brake their fast sunward flowOnly a small fraction of dipolarizations reach the nightside surface; most brake and contribute to magnetic flux pileupPileup results from the interaction of multiple dipolarizations and is consistent with Earth‐like substorm current wedge formation
dc.publisherJohn Wiley
dc.subject.otherdipolarization
dc.subject.othercomparative magnetospheric physics
dc.subject.othersubstorm current wedge
dc.subject.otherflow braking
dc.subject.otherMercury
dc.titleMESSENGER Observations of Flow Braking and Flux Pileup of Dipolarizations in Mercury’s Magnetotail: Evidence for Current Wedge Formation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162780/2/jgra55966.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162780/1/jgra55966_am.pdfen_US
dc.identifier.doi10.1029/2020JA028112
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSergeev, V. A., Angelopoulos, V., Gosling, J. T., Cattell, C. A., & Russell, C. T. ( 1996 ). Detection of localized, plasma‐depleted flux tubes or bubbles in the midtail plasma sheet. Journal of Geophysical Research, 101 ( A5 ), 10,817 – 10,826. https://doi.org/10.1029/96JA00460
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K. H., & Auster, U. ( 2009 ). THEMIS observations of an earthward‐propagating dipolarization front. Geophysical Research Letters, 36, L14106. https://doi.org/10.1029/2009GL038980
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., & Zhou, X.‐Z. ( 2012 ). Multipoint observations of dipolarization front formation by magnetotail reconnection. Journal of Geophysical Research, 117, A05230. https://doi.org/10.1029/2011JA017361
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., & Tracy, P. J. ( 2017 ). Interpreting FIPS density, temperature, and pressure. NASA planetary data system, MESS‐E/V/H/SW‐EPPS‐3‐FIPS‐DDR‐V2.0.
dc.identifier.citedreferenceShiokawa, K., Baumjohann, W., & Haerendel, G. ( 1997 ). Braking of high‐speed flows in the near‐earth tail. Geophysical Research Letters, 24 ( 10 ), 1179 – 1182. https://doi.org/10.1029/97GL01062
dc.identifier.citedreferenceShue, J.‐H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., & Kawano, H. ( 1998 ). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103 ( A8 ), 17,691 – 17,700. https://doi.org/10.1029/98JA01103
dc.identifier.citedreferenceSitnov, M. I., Swisdak, M., & Divin, A. V. ( 2009 ). Dipolarization fronts as a signature of transient reconnection in the magnetotail. Journal of Geophysical Research, 114, A04202. https://doi.org/10.1029/2008JA013980
dc.identifier.citedreferenceSlavin, J. A., Acuna, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Travnicek, P., & Zurbuchen, T. H. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Nittler, L. R., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Starr, R. D., Travnicek, P. M., & Zurbuchen, T. H. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., Ho, G. C., Imber, S. M., Korth, H., Krimigis, S. M., McNutt, R. L. Jr., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., & Zurbuchen, T. H. ( 2012 ). MESSENGER and mariner 10 flyby observations of magnetotail structure and dynamics at mercury. Journal of Geophysical Research, 117, A01215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., Baker, D. N., Gershman, D. J., Ho, G., Imber, S. M., Krimigis, S. M., & Sundberg, T. ( 2018 ). Mercury’s dynamic magnetosphere. In S. C. L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Chap 17, pp. 461 – 496 ). London: Cambridge Univ. Press. ISBN: 978‐1107154452
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S., Poh, G. K., Raines, J., Zurbuchen, T. H., Jia, X., Baker, D. N., Glassmeier, K.‐H., Livi, S. A., Boardsen, S. A., Cassidy, T. A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C. L., Winslow, R. M., Anderson, B. J., Korth, H., McNutt, R. L. Jr., & Solomon, S. C. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119, 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1981 ). Solar wind flow about the terrestrial planets, 1. Modeling bow shock position and shape. Journal of Geophysical Research, 86 ( A13 ), 11401 – 11,418. https://doi.org/10.1029/JA086iA13p11401
dc.identifier.citedreferenceSmith, A. W., Slavin, J. A., Jackman, C. M., Poh, G.‐K., & Fear, R. C. ( 2017 ). Flux ropes in the Hermean magnetotail: Distribution, properties, and formation. Journal of Geophysical Research: Space Physics, 122, 8136 – 8153. https://doi.org/10.1002/2017JA024295
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1991 ). An approximate description of field‐aligned currents in a planetary magnetic field. Journal of Geophysical Research, 96 ( A1 ), 67 – 75. https://doi.org/10.1029/90ja01806
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Parks, G. K., Liu, J., Yao, Z. H., Shi, Q. Q., Zong, Q. G., Huang, S. Y., Pu, Z. Y., & Xiao, T. ( 2013 ). Field‐aligned currents associated with dipolarizations fronts. Geophysical Research Letters, 40, 4503 – 4508. https://doi.org/10.1002/grl.50902
dc.identifier.citedreferenceSun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. ( 2016 ). Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. Journal of Geophysical Research: Space Physics, 121, 7590 – 7607. https://doi.org/10.1002/2016JA022787
dc.identifier.citedreferenceSun, W. J., Raines, J. M., Fu, S. Y., Slavin, J. A., Wei, Y., Poh, G. K., Pu, Z. Y., Yao, Z. H., Zong, Q. G., & Wan, W. X. ( 2017 ). MESSENGER observations of the energization and heating of protons in the near‐Mercury magnetotail. Geophysical Research Letters, 44, 8149 – 8158. https://doi.org/10.1002/2017GL074276
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., Jasinski, J. M., Jia, X., & Akhavan‐Tafti, M. ( 2020 ). MESSENGER Observations of Mercury’s Nightside Magnetosphere under Extreme Solar Wind Conditions: Reconnection‐Generated Structures and Steady Convection. Journal of Geophysical Research: Space Physics, 125, e2019JA027490. https://doi.org/10.1029/2019JA027490
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Raines, J. M., Fu, S. Y., Wei, Y., Karlsson, T., Poh, G. K., Jia, X., Gershman, D. J., Zong, Q. G., Wan, W. X., Shi, Q. Q., Pu, Z. Y., & Zhao, D. ( 2018 ). A comparative study of the proton properties of magnetospheric substorms at earth and mercury in the near magnetotail. Geophysical Research Letters, 45, 7933 – 7941. https://doi.org/10.1029/2018GL079181
dc.identifier.citedreferenceSun, W.‐J., Slavin, J. A., Fu, S., Raines, J. M., Sundberg, T., Zong, Q. G., Jia, X., Shi, Q., Shen, X., Poh, G., Pu, Z., & Zurbuchen, T. H. ( 2015 ). MESSENGER observations of Alfvénic and compressional waves during Mercury’s substorms. Geophysical Research Letters, 42, 6189 – 6198. https://doi.org/10.1002/2015GL065452
dc.identifier.citedreferenceSundberg, T., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Ho, G. C., Schriver, D., Uritsky, V. M., Zurbuchen, T. H., Raines, J. M., Baker, D. N., Krimigis, S. M., McNutt, R. L. Jr., & Solomon, S. C. ( 2012 ). MESSENGER observations of dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research, 117, A00M03. https://doi.org/10.1029/2012JA017756
dc.identifier.citedreferenceUkhorskiy, A. Y., Sorathia, K. A., Merkin, V. G., Sitnov, M. I., Mitchell, D. G., & Gkioulidou, M. ( 2018 ). Ion trapping and acceleration at dipolarization fronts: High‐resolution MHD and test‐particle simulations. Journal of Geophysical Research: Space Physics, 123, 5580 – 5589. https://doi.org/10.1029/2018JA025370
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., Baker, D. N., & Solomon, S. C. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. Journal of Geophysical Research: Space Physics, 118, 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceZhong, J., Wan, W. X., Wei, Y., Slavin, J. A., Raines, J. M., Rong, Z. J., Chari, L. H., & Han, X. H. ( 2015 ). Compressibility of Mercury’s dayside magnetosphere. Geophysical Research Letters, 42, 10,135 – 10,139. https://doi.org/10.1002/2015GL067063
dc.identifier.citedreferenceDewey, R. M., Slavin, J. A., Raines, J. M., Baker, D. N., & Lawrence, D. J. ( 2017 ). Energetic electron acceleration and injection during dipolarization events in Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 122, 12,170 – 12,188. https://doi.org/10.1002/2017JA024617
dc.identifier.citedreferenceAnderson, B. J., Acuña, M. H., Lohr, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. ( 2007 ). The magnetometer instrument on MESSENGER. Space Science Reviews, 131 ( 1–4 ), 417 – 450. https://doi.org/10.1007/s11214-007-9246-7
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., Solomon, S. C., McNutt, R. L., Raines, J. M., & Zurbuchen, T. H. ( 2011 ). The global magnetic field of mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Slavin, J. A., Winslow, R. M., Phillips, R. J., Solomon, S. C., & McNutt, R. L. Jr. ( 2014 ). Steady‐state field‐aligned currents at mercury. Geophysical Research Letters, 41, 7444 – 7452. https://doi.org/10.1002/2014GL061677
dc.identifier.citedreferenceAndrews, G. B., Zurbuchen, T. H., Mauk, B. H., Malcom, H., Fisk, L. A., Gloeckler, G., Ho, G. C., Kelley, J. S., Koehn, P. L., LeFevere, T. W., Livi, S. S., Lundgren, R. A., & Raines, J. M. ( 2007 ). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131 ( 1–4 ), 523 – 556. https://doi.org/10.1007/s11214-007-9272-5
dc.identifier.citedreferenceAngelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H., & Paschmann, G. ( 1992 ). Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 97 ( A4 ), 4027 – 4039. https://doi.org/10.1029/91JA02701
dc.identifier.citedreferenceAshour‐Abdalla, M., El‐Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G., & Hwang, K.‐J. ( 2011 ). Observations and simulations of non‐local acceleration of electrons in magnetotail magnetic reconnection events. Nature Physics, 7 ( 4 ), 360 – 365. https://doi.org/10.1038/nphys1903
dc.identifier.citedreferenceAzari, A. R., Liemohn, M. W., Jia, X., Thomsen, M. F., Mitchell, D. G., Sergis, N., Rymer, A. M., Hospodarsky, G. B., Paranicas, C., & Vandegriff, J. ( 2018 ). Interchange injections at Saturn: Statistical survey of energetic H+ sudden flux intensifications. Journal of Geophysical Research: Space Physics, 123, 4692 – 4711. https://doi.org/10.1029/2018JA025391
dc.identifier.citedreferenceBaumjohann, W., Hesse, M., Kokubun, S., Mukai, T., Nagai, T., & Petrukovich, A. A. ( 1999 ). Substorm dipolarization and recovery. Journal of Geophysical Research, 104 ( A11 ), 24,995 – 25,000. https://doi.org/10.1029/1999JA900282
dc.identifier.citedreferenceBirn, J., Hesse, M., Haerendel, G., Aumjohann, W. B., & Shiokawa, K. ( 1999 ). Flow braking and the substorm current wedge. Journal of Geophysical Research, 114 ( A ), 19,895 – 19,904.
dc.identifier.citedreferenceBirn, J., Hesse, M., Nakamura, R., & Zaharia, S. ( 2013 ). Particle acceleration in dipolarization events. Journal of Geophysical Research: Space Physics, 118, 1960 – 1971. https://doi.org/10.1002/jgra.50132
dc.identifier.citedreferenceBirn, J., Liu, J., Runov, A., Kepko, L., & Angelopoulos, V. ( 2019 ). On the contribution of dipolarizing flux bundles to the substorm current wedge and to flux and energy transport. Journal of Geophysical Research: Space Physics, 124, 5408 – 5420. https://doi.org/10.1029/2019JA026658
dc.identifier.citedreferenceBirn, J., Nakamura, R., Panov, E., & Hesse, M. ( 2011 ). Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection. Journal of Geophysical Research, 116, A01210. https://doi.org/10.1029/2010JA016083
dc.identifier.citedreferenceDelcourt, D. ( 2013 ). On the supply of heavy planetary material to the magnetotail of mercury. Annales Geophysicae, 31 ( 10 ), 1673 – 1679. https://doi.org/10.5194/angeo-31-1673-2013
dc.identifier.citedreferenceDelcourt, D. C., Grimald, S., Leblanc, F., Berthelier, J.‐J., Millilo, A., Mura, A., Orsini, S., & Moore, T. E. ( 2003 ). A quantitative model of planetary Na+ contribution to Mercury’s magnetosphere. Annales Geophysicae, 21 ( 8 ), 1723 – 1736. https://doi.org/10.5194/angeo-21-1723-2003
dc.identifier.citedreferenceDewey, R. M., Raines, J. M., Sun, W., Slavin, J. A., & Poh, G. ( 2018 ). MESSENGER observations of fast plasma flows in Mercury’s magnetotail. Geophysical Research Letters, 45, 10,110 – 10,118. https://doi.org/10.1029/2018GL079056
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Baker, D. N., McNutt, R. L. Jr., & Solomon, S. C. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118, 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Imber, S. M., Gershman, D. J., Raines, J. M., Jackman, C. M., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., McNutt, R. L. Jr., & Solomon, S. C. ( 2015 ). MESSENGER observations of flux ropes in Mercury’s magnetotail. Planetary and Space Science, 115, 77 – 89. https://doi.org/10.1016/j.pss.2014.12.016
dc.identifier.citedreferenceDubyagin, S., Sergeev, V., Apatenkov, S., Angelopoulos, V., Runov, A., Nakamura, R., Baumjohann, W., McFadden, J., & Larson, D. ( 2011 ). Can flow bursts penetrate into the inner magnetosphere? Geophysical Research Letters, 38, L08102. https://doi.org/10.1029/2011GL047016
dc.identifier.citedreferenceFu, H. S., Cao, J. B., Khotyaintsev, Y. V., Sitnov, M. I., Runov, A., Fu, S. Y., Hamrin, M., André, M., Retinò, A., Ma, Y. D., Lu, H. Y., Wei, X. H., & Huang, S. Y. ( 2013 ). Dipolarization fronts as a consequence of transient reconnection: In situ evidence. Geophysical Research Letters, 40, 6023 – 6027. https://doi.org/10.1002/2013GL058620
dc.identifier.citedreferenceGabrielse, C., Harris, C., Angelopoulos, V., Artemyev, A., & Runov, A. ( 2016 ). The role of localized inductive electric fields in electron injections around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 121, 9560 – 9585. https://doi.org/10.1002/2016JA023061
dc.identifier.citedreferenceGershman, D. J., Slavin, J. A., Raines, J. M., Zurbuchen, T. H., Anderson, B. J., Korth, H., Baker, D. N., & Solomon, S. C. ( 2013 ). Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 118, 7181 – 7199. https://doi.org/10.1002/2013JA019244
dc.identifier.citedreferenceImber, S. M., & Slavin, J. A. ( 2017 ). MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. Journal of Geophysical Research: Space Physics, 122, 11,402 – 11,412. https://doi.org/10.1002/2017JA024332
dc.identifier.citedreferenceJanhunen, P., & Kallio, E. ( 2004 ). Surface conductivity of mercury provides current closure and may affect magnetospheric symmetry. Annals of Geophysics, 22 ( 5 ), 1829 – 1837. https://doi.org/10.5194/angeo-22-1829-2004
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120, 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., Raines, J. M., & Gombosi, T. I. ( 2019 ). MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124, 229 – 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceJohnson, C. L., Philpott, L. C., Anderson, B. J., Korth, H., Hauck, S. A. II, Heyner, D., Phillips, R. J., Winslow, R. M., & Solomon, S. C. ( 2016 ). Messenger observations of induced magnetic fields in Mercury’s core. Geophysical Research Letters, 43, 2436 – 2444. https://doi.org/10.1002/2015GL067370
dc.identifier.citedreferenceKarlsson, T., Hamrin, M., Nilsson, H., Kullen, A., & Pitkänen, T. ( 2015 ). Magnetic forces associated with bursty bulk flows in Earth’s magnetotail. Geophysical Research Letters, 42, 3122 – 3128. https://doi.org/10.1002/2015GL063999
dc.identifier.citedreferenceKaymaz, Z., Siscoe, G. L., & Luhmann, J. G. ( 1992 ). IMF draping around the Geotail: IMP 8 observations. Journal of Geophysical Research, 19 ( 8 ), 829 – 832. https://doi.org/10.1029/92GL00403
dc.identifier.citedreferenceKepko, L., Glassmeier, K.‐H., Slavin, J. A., & Sundberg, T. ( 2015 ). Substorm current wedge at Earth and Mercury. In A. Keiling, C. M. Jackman, & P. A. Delamere (Eds.), Magnetotails in the solar system (pp. 361 – 372 ). Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118842324.ch21
dc.identifier.citedreferenceKepko, L., McPherron, R., Amm, O., Apatenkov, S., Baumjohann, W., Birn, J., & Sergeev, V. ( 2015 ). Substorm current wedge revisited. Space Science Reviews, 190 ( 1‐4 ), 1 – 46. https://doi.org/10.1007/s11214-014-0124-9
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Solomon, S. C., & McNutt, R. L. Jr. ( 2014 ). Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. Journal of Geophysical Research: Space Physics, 119, 2917 – 2932. https://doi.org/10.1002/2013JA019567
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Johnson, C. L., Slavin, J. A., Raines, J. M., & Zurbuchen, T. H. ( 2018 ). Structure and configuration of Mercury’s magnetosphere. In S. C. L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Chap 16, pp. 430 – 460 ). London: Cambridge Univ. Press. ISBN: 978‐1107154452
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Runov, A., & Zhou, X.‐Z. ( 2013 ). On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. Journal of Geophysical Research: Space Physics, 118, 2000 – 2020. https://doi.org/10.1002/jgra.50092
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Zhou, X.‐Z., & Runov, A. ( 2014 ). Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 119, 909 – 926. https://doi.org/10.1002/2013JA019395
dc.identifier.citedreferenceMcPherron, R. L., Russell, C. T., & Aubry, M. A. ( 1973 ). Satellite studies of magnetospheric substorms on August 15, 1968, 9, Phenomenological model for substorms. Journal of Geophysical Research, 78, 3131.
dc.identifier.citedreferenceMerkin, V. G., Panov, E. V., Sorathia, K., & Ukhorskiy, A. Y. ( 2019 ). Contribution of bursty bulk flows to the global dipolarization of the magnetotail during an isolated substorm. Journal of Geophysical Research: Space Physics, 124, 8647 – 8668. https://doi.org/10.1029/2019JA026872
dc.identifier.citedreferenceNakamura, M. S., Matsumoto, H., & Fujimoto, M. ( 2002 ). Interchange instability at the leading part of reconnection jets. Geophysical Research Letters, 29 ( 8 ), 1247. https://doi.org/10.1029/2001GL013780
dc.identifier.citedreferenceNakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk, M., & Balogh, A. ( 2004 ). Spatial scale of high‐speed flows in the plasma sheet observed by Cluster. Geophysical Research Letters, 31, L09804. https://doi.org/10.1029/2004GL019558
dc.identifier.citedreferenceOgilvie, K. W., Scudder, J. D., Vasyliunas, V. M., Hartle, R. E., & Siscoe, G. L. ( 1977 ). Observations at the planet mercury by the plasma electron experiment, Mariner 10. Journal of Geophysical Research, 82 ( 13 ), 1807 – 1824. https://doi.org/10.1029/JA082i013p01807
dc.identifier.citedreferenceOhtani, S., Singer, H. J., & Mukai, T. ( 2006 ). Effects of the fast plasma sheet flow on the geosynchronous magnetic configuration: Geotail and GOES coordinated study. Journal of Geophysical Research, 111, A01204. https://doi.org/10.1029/2005JA011383
dc.identifier.citedreferencePanov, E. V., Baumjohann, W., Nakamura, R., Kubyshkina, M. V., Glassmeier, K.‐H., Angelopoulos, V., Petrukovich, A. A., & Sergeev, V. A. ( 2014 ). Period and damping factor of Pi2 pulsations during oscillatory flow braking in the magnetotail. Journal of Geophysical Research: Space Physics, 119, 4512 – 4520. https://doi.org/10.1002/2013JA019633
dc.identifier.citedreferenceParks, G. K., Lee, E., Lin, N., Mozer, F., Wilber, M., Dandouras, I., Rème, H., Lucek, E., Fazakerley, A., Goldstein, M., Gurgiolo, C., Canu, P., Cornilleau‐Wehrlin, N., & Décréau, P. ( 2007 ). Solitary electromagnetic pulses detected with super‐Alfvénic flows in Earth’s geomagnetic tail. Physical Review Letters, 98 ( 26 ), 98. https://doi.org/10.1103/PhysRevLett.98.265001
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.‐J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017a ). Mercury’s cross‐tail current sheet: Structure, X‐line location and stress balance. Geophysical Research Letters, 44, 678 – 686. https://doi.org/10.1002/2016GL071612
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Raines, J. M., Imber, S. M., Sun, W.‐J., Gershman, D. J., DiBraccio, G. A., Genestreti, K. J., & Smith, A. W. ( 2017b ). Coupling between Mercury and its nightside magnetosphere: Cross‐tail current sheet asymmetry and substorm current wedge formation. Journal of Geophysical Research: Space Physics, 122, 8419 – 8433. https://doi.org/10.1002/2017JA024266
dc.identifier.citedreferencePoh, G., Slavin, J. A., Jia, X., Sun, W.‐J., Raines, J. M., Imber, S. M., DiBraccio, G. A., & Gershman, D. J. ( 2018 ). Transport of mass and energy in Mercury’s plasma sheet. Geophysical Research Letters, 45, 12,163 – 12,170. https://doi.org/10.1029/2018GL080601
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Slavin, J. A., Zurbuchen, T. H., Korth, H., Anderson, B. J., & Solomon, S. C. ( 2014 ). Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. Journal of Geophysical Research: Space Physics, 119, 6587 – 6602. https://doi.org/10.1002/2014JA020120
dc.identifier.citedreferenceRaines, J. M., Gershman, D. J., Zurbuchen, T. H., Sarantos, M., Slavin, J. A., Gilbert, J. A., Korth, H., Anderson, B. J., Gloeckler, G., Krimigis, S. M., Baker, D. N., McNutt, R. L. Jr., & Solomon, S. C. ( 2013 ). Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. Journal of Geophysical Research: Space Physics, 118, 1604 – 1619. https://doi.org/10.1029/2012JA018073
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Tracy, P., Gershman, D. J., Zurbuchen, T., Dewey, R. M., & Sarantos, M. ( 2016 ). Plasma precipitation on Mercury’s nightside and its implications for magnetospheric convection and exosphere generation. AGU Fall Meeting 2016. Paper #SM53B‐08, San Francisco, CA
dc.identifier.citedreferenceRaines, J. M., Slavin, J. A., Zurbuchen, T. H., Gloeckler, G., Anderson, B. J., Baker, D. N., Korth, H., Krimigis, S. M., & McNutt, R. L. Jr. ( 2011 ). MESSENGER observations of the plasma environment near mercury. Planetary and Space Science, 59 ( 15 ), 2004 – 2015. https://doi.org/10.1016/j.pss.2011.02.004
dc.identifier.citedreferenceRong, Z. J., Ding, Y., Slavin, J. A., Zhong, J., Poh, G., Sun, W. J., Wei, Y., Chai, L. H., Wan, W. X., & Shen, C. ( 2018 ). The magnetic field structure of Mercury’s magnetotail. Journal of Geophysical Research: Space Physics, 123, 548 – 566. https://doi.org/10.1002/2017JA024923
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D. L., & Zhou, X.‐Z. ( 2015 ). Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 120, 4369 – 4383. https://doi.org/10.1002/2015JA021166
dc.identifier.citedreferenceRunov, A., Angelopoulos, V., Gabrielse, C., Zhou, X.‐Z., Turner, D., & Plaschkle, F. ( 2013 ). Electron fluxes and pitch‐angle distributions at dipolarization fronts: THEMIS multipoint observations. Journal of Geophysical Research: Space Physics, 118, 744 – 755. https://doi.org/10.1002/jgra.50121
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.