Show simple item record

Reachability-based Trajectory Design

dc.contributor.authorKousik, Shreyas
dc.date.accessioned2020-10-04T23:21:16Z
dc.date.availableNO_RESTRICTION
dc.date.available2020-10-04T23:21:16Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/2027.42/162884
dc.description.abstractAutonomous mobile robots have the potential to increase the availability and accessibility of goods and services throughout society. However, to enable public trust in such systems, it is critical to certify that they are safe. This requires formally specifying safety, and designing motion planning methods that can guarantee safe operation (note, this work is only concerned with planning, not perception). The typical paradigm to attempt to ensure safety is receding-horizon planning, wherein a robot creates a short plan, then executes it while creating its next short plan in an iterative fashion, allowing a robot to incorporate new sensor information over time. However, this requires a robot to plan in real time. Therefore, the key challenge in making safety guarantees lies in balancing performance (how quickly a robot can plan) and conservatism (how cautiously a robot behaves). Existing methods suffer from a tradeoff between performance and conservatism, which is rooted in the choice of model used describe a robot; accuracy typically comes at the price of computation speed. To address this challenge, this dissertation proposes Reachability-based Trajectory Design (RTD), which performs real-time, receding-horizon planning with a simplified planning model, and ensures safety by describing the model error using a reachable set of the robot. RTD begins with the offline design of a continuum of parameterized trajectories for the plan- ning model; each trajectory ends with a fail-safe maneuver such as braking to a stop. RTD then computes the robot’s Forward Reachable Set (FRS), which contains all points in workspace reach- able by the robot for each parameterized trajectory. Importantly, the FRS also contains the error model, since a robot can typically never track planned trajectories perfectly. Online (at runtime), the robot intersects the FRS with sensed obstacles to provably determine which trajectory plans could cause collisions. Then, the robot performs trajectory optimization over the remaining safe trajectories. If no new safe plan can be found, the robot can execute its previously-found fail-safe maneuver, enabling perpetual safety. This dissertation begins by presenting RTD as a theoretical framework, then presents three representations of a robot’s FRS, using (1) sums-of-squares (SOS) polynomial programming, (2) zonotopes (a special type of convex polytope), and (3) rotatotopes (a generalization of zonotopes that enable representing a robot’s swept volume). To enable real-time planning, this work also de- velops an obstacle representation that enables provable safety while treating obstacles as discrete, finite sets of points. The practicality of RTD is demonstrated on four different wheeled robots (using the SOS FRS), two quadrotor aerial robots (using the zonotope FRS), and one manipulator robot (using the rotatotope FRS). Over thousands of simulations and dozens of hardware trials, RTD performs safe, real-time planning in arbitrary and challenging environments. In summary, this dissertation proposes RTD as a general purpose, practical framework for provably safe, real-time robot motion planning.
dc.language.isoen_US
dc.subjectrobotics
dc.subjectcontrols
dc.subjectsafety
dc.subjectmotion planning
dc.subjectmobile robots
dc.subjectmanipulators
dc.titleReachability-based Trajectory Design
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberVasudevan, Ram
dc.contributor.committeememberBerenson, Dmitry
dc.contributor.committeememberGrizzle, Jessy W
dc.contributor.committeememberOzay, Necmiye
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/162884/1/skousik_1.pdfen_US
dc.identifier.orcid0000-0003-1348-7463
dc.identifier.name-orcidKousik, Shreyas; 0000-0003-1348-7463en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.