Show simple item record

A recentering approach for interpreting interaction effects from logit, probit, and other nonlinear models

dc.contributor.authorJeong, Yujin
dc.contributor.authorSiegel, Jordan I.
dc.contributor.authorChen, Sophie Yu‐pu
dc.contributor.authorNewey, Whitney K.
dc.date.accessioned2020-11-04T15:59:47Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2020-11-04T15:59:47Z
dc.date.issued2020-11
dc.identifier.citationJeong, Yujin; Siegel, Jordan I.; Chen, Sophie Yu‐pu ; Newey, Whitney K. (2020). "A recentering approach for interpreting interaction effects from logit, probit, and other nonlinear models." Strategic Management Journal 41(11): 2072-2091.
dc.identifier.issn0143-2095
dc.identifier.issn1097-0266
dc.identifier.urihttps://hdl.handle.net/2027.42/163421
dc.description.abstractResearch SummaryStrategic management has seen numerous studies analyzing interaction terms in nonlinear models since Hoetker’s (Strat Mgmt J., 2007, 28(4), 331- 343) best- practice recommendations and Zelner’s (Strat Mgmt J., 2009, 30(12), 1335- 1348) simulation- based approach. We suggest an alternative recentering approach to assess the statistical and economic importance of interaction terms in nonlinear models. Our approach does not rely on making assumptions about the values of the control variables; it takes the existing model and data as is and requires fewer computational steps. The recentering approach not only provides a consistent answer about statistical meaningfulness of the interaction term at a given point of interest, but also helps to assess the effect size using the template that we offer in this study. We demonstrate how to implement our approach and discuss the implications for strategy researchers.Managerial SummaryIn industry settings, the relationship between multiple corporate strategy- related inputs and corporate performance is often nonlinear in nature. Furthermore, such relationships tend to vary for different types of firms represented within the broader population of firms in a given industry. It is thus imperative for managers to know how to take nonlinear relationships between related business factors into account when they make strategic decisions. We suggest a simple and easily implementable way of assessing and interpreting interactions in a nonlinear setting, which we term a recentering approach. We demonstrate how to apply our approach to a strategic management setting.
dc.publisherJohn Wiley & Sons, Ltd.
dc.subject.otherrecentering
dc.subject.otherodds ratio
dc.subject.othernonlinear models
dc.subject.otherinteraction effects
dc.subject.othereffect size
dc.titleA recentering approach for interpreting interaction effects from logit, probit, and other nonlinear models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBusiness (General)
dc.subject.hlbsecondlevelEconomics
dc.subject.hlbsecondlevelFilm and Video Studies
dc.subject.hlbsecondlevelManagement
dc.subject.hlbsecondlevelUrban Planning
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelArts
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163421/3/smj3202.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163421/2/smj3202-sup-0001-Supinfo.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163421/1/smj3202_am.pdfen_US
dc.identifier.doi10.1002/smj.3202
dc.identifier.sourceStrategic Management Journal
dc.identifier.citedreferenceShook, C. L., Ketchen, D. J., Cycyota, C. S., & Crockett, D. ( 2003 ). Data analytic trends and training in strategic management. Strategic Management Journal, 24 ( 12 ), 1231 - 1237.
dc.identifier.citedreferenceGreene, W. H. ( 2018 ). Econometric analysis ( 8th ed. ). New York, NY: Pearson.
dc.identifier.citedreferenceHoetker, G. ( 2007 ). The use of logit and probit models in strategic management research: Critical issues. Strategic Management Journal, 28 ( 4 ), 331 - 343.
dc.identifier.citedreferenceHorowitz, J. L. ( 2001 ). The bootstrap. In J. J. Heckman & E. Leamer (Eds.), Handbook of econometrics (Vol. 6, pp. 3159 - 3228 ). Amsterdam: North- Holland.
dc.identifier.citedreferenceJeong, Y., & Siegel, J. I. ( 2018 ). Threat of falling high status and corporate bribery: Evidence from the revealed accounting records of two South Korean presidents. Strategic Management Journal, 39 ( 4 ), 1083 - 1111.
dc.identifier.citedreferenceKing, G., Tomz, M., & Wittenberg, J. ( 2000 ). Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science, 44 ( 2 ), 347 - 361.
dc.identifier.citedreferenceKrinsky, I., & Robb, A. L. ( 1986 ). On approximating the statistical properties of elasticities. The Review of Economics and Statistics, 68 ( 4 ), 715 - 719.
dc.identifier.citedreferenceKrinsky, I., & Robb, A. L. ( 1990 ). On approximating the statistical properties of elasticities: A correction. The Review of Economics and Statistics, 72 ( 1 ), 189 - 190.
dc.identifier.citedreferenceKrinsky, I., & Robb, A. L. ( 1991 ). Three methods for calculating the statistical properties of elasticities: A comparison. Empirical Economics, 16 ( 2 ), 199 - 209.
dc.identifier.citedreferenceLeiblein, M. J., & Miller, D. J. ( 2003 ). An empirical examination of transaction- and firm- level influences on the vertical boundaries of the firm. Strategic Management Journal, 24 ( 9 ), 839 - 859.
dc.identifier.citedreferenceMoulton, B. R. ( 1990 ). An illustration of a pitfall in estimating the effects of aggregate variables on micro units. Review of Economics and Statistics, 72 ( 2 ), 334 - 338.
dc.identifier.citedreferenceNelder, J., & Wedderburn, R. ( 1972 ). Generalized linear models. Journal of the Royal Statistical Society, 135 ( 3 ), 370 - 384.
dc.identifier.citedreferenceNorton, E. C., Wang, H., & Ai, C. R. ( 2004 ). Computing interaction effects and standard errors in logit and probit models. The Stata Journal, 4 ( 2 ), 154 - 167.
dc.identifier.citedreferenceRothenberg, T. J. ( 1984 ). Approximating the distributions of econometric estimators and test statistics. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 2, pp. 881 - 935 ). Amsterdam: North- Holland.
dc.identifier.citedreferenceTomz, M., Wittenberg, J., & King, G. ( 2003 ). CLARIFY: Software for interpreting and presenting statistical results, version 2.1. Stanford University, University of Wisconsin, and Harvard University. Retrieved from http://gking.harvard.edu/
dc.identifier.citedreferenceZelner, B. A. ( 2009 ). Using simulation to interpret results from logit, probit, and other nonlinear models. Strategic Management Journal, 30 ( 12 ), 1335 - 1348.
dc.identifier.citedreferenceWooldridge, J. M. ( 2010 ). Econometric analysis of cross section and panel data ( 2nd ed. ). Cambridge, MA: MIT Press.
dc.identifier.citedreferenceWiersema, M. F., & Bowen, H. P. ( 2009 ). The use of limited dependent variable techniques in strategy research: Issues and methods. Strategic Management Journal, 30 ( 6 ), 679 - 692.
dc.identifier.citedreferenceAi, C. R., & Norton, E. C. ( 2003 ). Interaction terms in logit and probit models. Economics Letters, 80 ( 1 ), 123 - 129.
dc.identifier.citedreferenceCameron, A. C., & Trivedi, P. K. ( 2005 ). Microeconometrics: Methods and applications. New York, NY: Cambridge University Press.
dc.identifier.citedreferenceCameron, A. C., & Trivedi, P. K. ( 2010 ). Microeconometrics using Stata (revised ed.). College Station, TX: Stata Press.
dc.identifier.citedreferenceChen, H., Cohen, P., & Chen, S. ( 2010 ). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics - Simulation and Computation, 39 ( 4 ), 860 - 864.
dc.identifier.citedreferenceCohen, J. ( 1988 ). Statistical power analysis for the behavioral sciences ( 2nd ed. ). Hillsdale, NJ: Lawrence Erlbaum Associates.
dc.identifier.citedreferenceDorfman, R. ( 1938 ). A note on the δ- method for finding variance formulae. The Biometric Bulletin, 1, 129 - 137.
dc.identifier.citedreferenceGreene, W. H. ( 2010 ). Testing hypotheses about interaction terms in nonlinear models. Economics Letters, 107 ( 2 ), 291 - 296.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.