Show simple item record

Conductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts

dc.contributor.authorMukhopadhyay, Agnit
dc.contributor.authorWelling, Daniel T.
dc.contributor.authorLiemohn, Michael W.
dc.contributor.authorRidley, Aaron J.
dc.contributor.authorChakraborty, Shibaji
dc.contributor.authorAnderson, Brian J.
dc.date.accessioned2020-12-02T14:41:28Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:41:28Z
dc.date.issued2020-11
dc.identifier.citationMukhopadhyay, Agnit; Welling, Daniel T.; Liemohn, Michael W.; Ridley, Aaron J.; Chakraborty, Shibaji; Anderson, Brian J. (2020). "Conductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts." Space Weather 18(11): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/163631
dc.description.abstractIonospheric conductance is a crucial factor in regulating the closure of magnetospheric field‐aligned currents through the ionosphere as Hall and Pedersen currents. Despite its importance in predictive investigations of the magnetosphere‐ionosphere coupling, the estimation of ionospheric conductance in the auroral region is precarious in most global first‐principles‐based models. This impreciseness in estimating the auroral conductance impedes both our understanding and predictive capabilities of the magnetosphere‐ionosphere system during extreme space weather events. In this article, we address this concern, with the development of an advanced Conductance Model for Extreme Events (CMEE) that estimates the auroral conductance from field‐aligned current values. CMEE has been developed using nonlinear regression over a year’s worth of 1‐min resolution output from assimilative maps, specifically including times of extreme driving of the solar wind‐magnetosphere‐ionosphere system. The model also includes provisions to enhance the conductance in the aurora using additional adjustments to refine the auroral oval. CMEE has been incorporated within the Ridley Ionosphere Model (RIM) of the Space Weather Modeling Framework (SWMF) for usage in space weather simulations. This paper compares performance of CMEE against the existing conductance model in RIM, through a validation process for six space weather events. The performance analysis indicates overall improvement in the ionospheric feedback to ground‐based space weather forecasts. Specifically, the model is able to improve the prediction of ionospheric currents, which impact the simulated dB/dt and ΔB, resulting in substantial improvements in dB/dt predictive skill.Plain Language SummaryElectric currents generated in the Earth’s space environment due to its magnetic interaction with the Sun leads to charged particle deposition and closure of these currents in the terrestrial upper atmosphere, especially in the high‐latitude auroral region. The enhancement in the electrical charge‐carrying capacity as a result of this process in the Earth’s upper atmosphere, also known as the ionosphere, is challenging to estimate in most numerical simulations attempting to study the interactive dynamic and chemical processes in the near‐Earth region. The inability to accurately estimate this quantity leads to underprediction of severe space weather events that can have adverse impacts on man‐made technology like electrical power grids, railway, and oil pipelines. In this study, we present a novel modeling approach to address this problem and provide global simulations with a more accurate estimate on the electrical conductivity of the ionosphere. Through this investigation, we show that the accurate measurement of the charge carriers in the ionosphere using the new model causes substantial improvements in the prediction of space weather on the ground, and significantly advances our understanding of global dynamics causing ground‐based space weather.Key PointsAn updated auroral conductance module is built for global models using nonlinear regression and empirical adjustments spanning extreme eventsExpanded data set raises the ceiling of conductance values, impacting the polar cap potential, dB/dt, and dB predictions during extreme eventsApplication of expanded model with empirical oval adjustments refines the conductance pattern and drastically improves dB/dt predictions
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer Berlin Heidelberg
dc.subject.otherionospheric conductance
dc.titleConductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163631/3/swe21058.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163631/2/SWE21058-2020SW002551-sup-0007-Table_SI-S01.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163631/1/swe21058_am.pdfen_US
dc.identifier.doi10.1029/2020SW002551
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRobinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. ( 1987 ). On calculating ionospheric conductances from the flux and energy of precipitating electrons. Journal of Geophysical Research, 92 ( A3 ), 2565 – 2569. https://doi.org/10.1029/JA092iA03p02565
dc.identifier.citedreferenceDoherty, P., Coster, A. J., & Murtagh, W. ( 2004 ). Space weather effects of October–November 2003. GPS Solutions, 8 ( 4 ), 267 – 271. https://doi.org/10.1007/s10291‐004‐0109‐3
dc.identifier.citedreferenceRobinson, R. M., Zhang, Y., Anderson, B. J., Zanetti, L. J., Korth, H., & Fitzmaurice, A. ( 2018 ). Statistical relations between field‐aligned currents and precipitating electron energy flux. Geophysical Research Letters, 45, 8738 – 8745. https://doi.org/10.1029/2018GL078718
dc.identifier.citedreferenceRoederer, J. G. ( 1970 ). Dynamics of geomagnetically trapped radiation (Vol. 2 ). Berlin, Heidelberg: Springer.
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry, Cambridge Atmospheric and Space Science Series (2nd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511635342
dc.identifier.citedreferenceSorkine, O., Cohen‐Or, D., Lipman, Y., Alexa, M., Rössl, C., & Seidel, H.‐P. ( 2004 ). Laplacian surface editing, Proceedings of the 2004 Eurographics/ACM siggraph symposium on geometry processing (pp. 175 – 184 ). New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/1057432.1057456
dc.identifier.citedreferenceTóth, G., Meng, X., Gombosi, T. I., & Rastätter, L. ( 2014 ). Predicting the time derivative of local magnetic perturbations. Journal of Geophysical Research: Space Physics, 119, 310 – 321. https://doi.org/10.1002/2013JA019456
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., Oehmke, R. C., Powell, K. G., Ridley, A. J., Roussev, I. I., Stout, Q. F., Volberg, O., Wolf, R. A., Sazykin, S., Chan, A., Yu, B., & Kóta, J. ( 2005 ). Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., Manchester, W. B., Meng, X., Najib, D., Powell, K. G., Stout, Q. F., Glocer, A., Ma, Y. J., & Opher, M. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceWaters, C. L., Anderson, B. J., Green, D. L., Korth, H., Barnes, R. J., & Vanhamäki, H. ( 2020 ). Science data products for AMPERE. In M. W. Dunlop, & H. Lühr (Eds.), Ionospheric multi‐spacecraft analysis tools: Approaches for deriving ionospheric parameters (pp. 141 – 165 ). Cham: Springer International Publishing. https://doi.org/10.1007/978‐3‐030‐26732‐2_7
dc.identifier.citedreferenceWelling, D. ( 2020 ). Magnetohydrodynamic models of B and their use in GIC estimates. In J. L. Gannon, A. Swidinsky, Z. Xu (Eds.), Geomagnetically induced currents from the sun to the power grid. https://doi.org/10.1002/9781119434412.ch3
dc.identifier.citedreferenceWelling, D. T., Anderson, B. J., Crowley, G., Pulkkinen, A. A., & Rastätter, L. ( 2017 ). Exploring predictive performance: A reanalysis of the geospace model transition challenge. Space Weather, 15, 192 – 203. https://doi.org/10.1002/2016SW001505
dc.identifier.citedreferenceWelling, D. T., Ngwira, C. M., Opgenoorth, H., Haiducek, J. D., Savani, N. P., Morley, S. K., Cid, C., Weigel, R. S., Weygand, J. M., Woodroffe, J. R., Singer, H. J., Rosenqvist, L., & Liemohn, M. W. ( 2018 ). Recommendations for next‐generation ground magnetic perturbation validation. Space Weather, 16, 1912 – 1920. https://doi.org/10.1029/2018SW002064
dc.identifier.citedreferenceWelling, D. T., & Ridley, A. J. ( 2010 ). Exploring sources of magnetospheric plasma using multispecies MHD. Journal of Geophysical Research, 115, A04201. https://doi.org/10.1029/2009JA014596
dc.identifier.citedreferenceWilks, D. S. ( 2011 ). Statistical methods in the atmospheric sciences (3rd ed.). Waltham, MA: Academic Press.
dc.identifier.citedreferenceWiltberger, M., Merkin, V., Zhang, B., Toffoletto, F., Oppenheim, M., Wang, W., Lyon, J. G., Liu, J., Dimant, Y., Sitnov, M. I., & Stephens, G. K. ( 2017 ). Effects of electrojet turbulence on a magnetosphere‐ionosphere simulation of a geomagnetic storm. Journal of Geophysical Research: Space Physics, 122, 5008 – 5027. https://doi.org/10.1002/2016JA023700
dc.identifier.citedreferenceWiltberger, M., Wang, W., Burns, A. G., Solomon, S. C., Lyon, J. G., & Goodrich, C. C. ( 2004 ). Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66 ( 15 ), 1411 – 1423. https://doi.org/10.1016/j.jastp.2004.03.026
dc.identifier.citedreferenceWiltberger, M., Weigel, R. S., Lotko, W., & Fedder, J. A. ( 2009 ). Modeling seasonal variations of auroral particle precipitation in a global‐scale magnetosphere‐ionosphere simulation. Journal of Geophysical Research, 114 ( A1 ), 381 – 395. https://doi.org/10.1029/2008JA013108
dc.identifier.citedreferenceWolf, R. A., Harel, M., Spiro, R. W., Voigt, G.‐H., Reiff, P. H., & Chen, C.‐K. ( 1982 ). Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. Journal of Geophysical Research, 87 ( A8 ), 5949 – 5962. https://doi.org/10.1029/JA087iA08p05949
dc.identifier.citedreferenceYagou, H., Ohtake, Y., & Belyaev, A. ( 2002 ). Mesh smoothing via mean and median filtering applied to face normals, Geometric modeling and processing. Theory and applications. Gmp 2002. Proceedings (pp. 124 – 131 ). https://doi.org/10.1109/GMAP.2002.1027503
dc.identifier.citedreferenceYu, Y., Jordanova, V. K., Ridley, A. J., Albert, J. M., Horne, R. B., & Jeffery, C. A. ( 2016 ). A new ionospheric electron precipitation module coupled with RAM‐SCB within the geospace general circulation model. Journal of Geophysical Research: Space Physics, 121, 8554 – 8575. https://doi.org/10.1002/2016JA022585
dc.identifier.citedreferenceYu, Y., Ridley, A. J., Welling, D. T., & Tóth, G. ( 2010 ). Including gap region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations. Journal of Geophysical Research, 115, A08207. https://doi.org/10.1029/2009JA014869
dc.identifier.citedreferenceZhang, B., Lotko, W., Brambles, O., Wiltberger, M., & Lyon, J. ( 2015 ). Electron precipitation models in global magnetosphere simulations. Journal of Geophysical Research: Space Physics, 120, 1035 – 1056. https://doi.org/10.1002/2014JA020615
dc.identifier.citedreferenceAhn, B.‐H., Richmond, A. D., Kamide, Y., Kroehl, H. W., Emery, B. A., de la Beaujardiére, O., & Akasofu, S.‐I. ( 1998 ). An ionospheric conductance model based on ground magnetic disturbance data. Journal of Geophysical Research, 103, 14,769 – 14,780. https://doi.org/10.1029/97JA03088
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., & Dyrud, L. P. ( 2014 ). Development of large‐scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophysical Research Letters, 41, 3017 – 3025. https://doi.org/10.1002/2014GL059941
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Welling, D. T., Merkin, V. G., Wiltberger, M. J., Raeder, J., Barnes, R. J., Waters, C. L., Pulkkinen, A. A., & Rastaetter, L. ( 2017 ). Comparison of predictive estimates of high‐latitude electrodynamics with observations of global‐scale Birkeland currents. Space Weather, 15, 352 – 373. https://doi.org/10.1002/2016SW001529
dc.identifier.citedreferenceAxford, W. I., & Hines, C. O. ( 1961 ). A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39 ( 10 ), 1433 – 1464. https://doi.org/10.1139/p61‐172
dc.identifier.citedreferenceBoonsiriseth, A., Thorne, R. M., Lu, G., Jordanova, V. K., Thomsen, M. F., Ober, D. M., & Ridley, A. J. ( 2001 ). A semiempirical equatorial Mapping of AMIE Convection Electric Potentials (MACEP) for the January 10, 1997, magnetic storm. Journal of Geophysical Research, 106 ( A7 ), 12,903 – 12,917. https://doi.org/10.1029/1999JA000332
dc.identifier.citedreferenceBrekke, A., & Moen, J. ( 1993 ). Observations of high latitude ionospheric conductances. Journal of Atmospheric and Terrestrial Physics, 55 ( 11 ), 1493 – 1512. https://doi.org/10.1016/0021‐9169(93)90126‐J
dc.identifier.citedreferenceCarter, J. A., Milan, S. E., Coxon, J. C., Walach, M.‐T., & Anderson, B. J. ( 2016 ). Average field‐aligned current configuration parameterized by solar wind conditions. Journal of Geophysical Research: Space Physics, 121, 1294 – 1307. https://doi.org/10.1002/2015JA021567
dc.identifier.citedreferenceChapman, S. ( 1931 ). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proceedings of the Physical Society, 43 ( 1 ), 26 – 45. https://doi.org/10.1088/0959‐5309/43/1/305
dc.identifier.citedreferenceCid, C., Saiz, E., Guerrero, A., Palacios, J., & Cerrato, Y. ( 2015 ). A Carrington‐like geomagnetic storm observed in the 21st century. Journal of Space Weather and Space Climate, 5, A16. https://doi.org/10.1051/swsc/2015017
dc.identifier.citedreferenceConnor, H. K., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M. V., & Fuller‐Rowell, T. J. ( 2016 ). Modeling the ionosphere‐thermosphere response to a geomagnetic storm using physics‐based magnetospheric energy input: OpenGGCM‐CTIM results. Journal of Space Weather and Space Climate, 6, A25. https://doi.org/10.1051/swsc/2016019
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Tóth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109, A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceDungey, J. W. ( 1963 ). Interactions of solar plasma with the geomagnetic field. Planetary and Space Science, 10, 233 – 237. https://doi.org/10.1016/0032‐0633(63)90020‐5
dc.identifier.citedreferenceFrahm, R. A., Winningham, J. D., Sharber, J. R., Link, R., Crowley, G., Gaines, E. E., Chenette, D. L., Anderson, B. J., & Potemra, T. A. ( 1997 ). The diffuse aurora: A significant source of ionization in the middle atmosphere. Journal of Geophysical Research, 102 ( D23 ), 28,203 – 28,214. https://doi.org/10.1029/97JD02430
dc.identifier.citedreferenceFuller‐Rowell, T. J., & Evans, D. S. ( 1987 ). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 – 7618. https://doi.org/10.1029/JA092iA07p07606
dc.identifier.citedreferenceGao, Y. ( 2012 ). Comparing the cross polar cap potentials measured by SuperDARN and AMIE during saturation intervals. Journal of Geophysical Research, 117, A08325. https://doi.org/10.1029/2012JA017690
dc.identifier.citedreferenceGlocer, A., Rastötter, L., Kuznetsova, M., Pulkkinen, A., Singer, H. J., Balch, C., Weimer, D., Welling, D., Wiltberger, M., Raeder, J., Weigel, R. S., McCollough, J., & Wing, S. ( 2016 ). Community‐wide validation of geospace model local K‐index predictions to support model transition to operations. Space Weather, 14, 469 – 480. https://doi.org/10.1002/2016SW001387
dc.identifier.citedreferenceGombosi, T. I., De Zeeuw, D. L., Powell, K. G., Ridley, A. J., Sokolov, I. V., Stout, Q. F., & Tóth, G. ( 2003 ). Adaptive mesh refinement for global magnetohydrodynamic simulation. In J. Büchner, M. Scholer, C. T. Dum (Eds.), Space plasma simulation (pp. 247 – 274 ). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3‐540‐36530‐3_12
dc.identifier.citedreferenceGoodman, M. L. ( 1995 ). A three‐dimensional, iterative mapping procedure for the implementation of an ionosphere‐magnetosphere anisotropic Ohm’s law boundary condition in global magnetohydrodynamic simulations. Annales Geophysicae, 13 ( 8 ), 843 – 853. https://doi.org/10.1007/s00585‐995‐0843‐z
dc.identifier.citedreferenceHaiducek, J. D., Welling, D. T., Ganushkina, N. Y., Morley, S. K., & Ozturk, D. S. ( 2017 ). SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross‐polar cap potential. Space Weather, 15, 1567 – 1587. https://doi.org/10.1002/2017SW001695
dc.identifier.citedreferenceHanssen, A. W., & Kuipers, W. J. A. ( 1965 ). On the relationship between the frequency of rain and various meteorological parameters. Koninklijk Ned. Meteor. Instit., Meded. Verhand, 81, 2 – 15.
dc.identifier.citedreferenceHartinger, M. D., Xu, Z., Clauer, C. R., Yu, Y., Weimer, D. R., Kim, H., Pilipenko, V., Welling, D. T., Behlke, R., & Willer, A. N. ( 2017 ). Associating ground magnetometer observations with current or voltage generators. Journal of Geophysical Research: Space Physics, 122, 7130 – 7141. https://doi.org/10.1002/2017JA024140
dc.identifier.citedreferenceHeidke, P. ( 1926 ). Berechnung des Erfolges und der Güte der Windstärkevorhersagen im Sturmwarnungsdienst. Geografiska Annaler, 8, 301 – 349.
dc.identifier.citedreferenceHerrmann, L. R. ( 1976 ). Laplacian‐isoparametric grid generation scheme. Journal of the Engineering Mechanics Division, 102 ( 5 ), 749 – 907.
dc.identifier.citedreferenceHonkonen, I., Rastätter, L., Grocott, A., Pulkkinen, A., Palmroth, M., Raeder, J., Ridley, A. J., & Wiltberger, M. ( 2013 ). On the performance of global magnetohydrodynamic models in the Earth’s magnetosphere. Space Weather, 11, 313 – 326. https://doi.org/10.1002/swe.20055
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1976 ). The amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81 ( 13 ), 2165 – 2174. https://doi.org/10.1029/JA081i013p02165
dc.identifier.citedreferenceJolliffe, I. T., & Stephenson, D. B. ( 2012 ). Forecast verification: A practitioner’s guide in atmospheric science. Chichester, UK: John Wiley & Sons.
dc.identifier.citedreferenceKaeppler, S. R., Hampton, D. L., Nicolls, M. J., Strømme, A., Solomon, S. C., Hecht, J. H., & Conde, M. G. ( 2015 ). An investigation comparing ground‐based techniques that quantify auroral electron flux and conductance. Journal of Geophysical Research: Space Physics, 120, 9038 – 9056. https://doi.org/10.1002/2015JA021396
dc.identifier.citedreferenceKhachikjan, G. Y., Koustov, A. V., & Sofko, G. J. ( 2008 ). Dependence of SuperDARN cross polar cap potential upon the solar wind electric field and magnetopause subsolar distance. Journal of Geophysical Research, 113, A09214. https://doi.org/10.1029/2008JA013107
dc.identifier.citedreferenceKihn, E. A., & Ridley, A. J. ( 2005 ). A statistical analysis of the assimilative mapping of ionospheric electrodynamics auroral specification. Journal of Geophysical Research, 110, A07305. https://doi.org/10.1029/2003JA010371
dc.identifier.citedreferenceKnight, S. ( 1973 ). Parallel electric fields. Planetary and Space Science, 21, 741 – 750.
dc.identifier.citedreferenceKorth, H., Zhang, Y., Anderson, B. J., Sotirelis, T., & Waters, C. L. ( 2014 ). Statistical relationship between large‐scale upward field‐aligned currents and electron precipitation. Journal of Geophysical Research: Space Physics, 119, 6715 – 6731. https://doi.org/10.1002/2014JA019961
dc.identifier.citedreferenceLe, G., Lühr, H., Anderson, B. J., Strangeway, R. J., Russell, C. T., Singer, H., Slavin, J. A., Zhang, Y., Huang, T., Bromund, K., Chi, P. J., Lu, G., Fischer, D., Kepko, E. L., Leinweber, H. K., Magnes, W., Nakamura, R., Plaschke, F., Park, J., Rauberg, J., Stolle, C., & Torbert, R. B. ( 2016 ). Magnetopause erosion during the 17 March 2015 Magnetic storm: Combined field‐aligned currents, auroral oval, and magnetopause observations. Geophysical Research Letters, 43, 2396 – 2404. https://doi.org/10.1002/2016GL068257
dc.identifier.citedreferenceLiemohn, M. W., Ganushkina, N. Y., De Zeeuw, D. L., Rastaetter, L., Kuznetsova, M., Welling, D. T., Toth, G., Ilie, R., Gombosi, T. I., & van der Holst, B. ( 2018 ). Real‐time SWMF at CCMC: Assessing the Dst output from continuous operational simulations. Space Weather, 16, 1583 – 1603. https://doi.org/10.1029/2018SW001953
dc.identifier.citedreferenceLiemohn, M. W., McCollough, J. P., Jordanova, V. K., Ngwira, C. M., Morley, S. K., Cid, C., Tobiska, W. K., Wintoft, P., Ganushkina, N. Y., Welling, D. T., Bingham, S., Balikhin, M. A., Opgenoorth, H. J., Engel, M. A., Weigel, R. S., Singer, H. J., Buresova, D., Bruinsma, S., Zhelavskaya, I. S., Shprits, Y. Y., & Vasile, R. ( 2018 ). Model evaluation guidelines for geomagnetic index predictions. Space Weather, 16, 2079 – 2102. https://doi.org/10.1029/2018SW002067
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Brandt, P. C., Gallagher, D. L., Kozyra, J. U., Ober, D. M., Mitchell, D. G., Roelof, E. C., & DeMajistre, R. ( 2005 ). Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. Journal of Geophysical Research, 110, A12S22. https://doi.org/10.1029/2005JA011109
dc.identifier.citedreferenceLu, G., Siscoe, G. L., Richmond, A. D., Pulkkinen, T. I., Tsyganenko, N. A., Singer, H. J., & Emery, B. A. ( 1997 ). Mapping of the ionospheric field‐aligned currents to the equatorial magnetosphere. Journal of Geophysical Research, 102 ( A7 ), 14,467 – 14,476. https://doi.org/10.1029/97JA00744
dc.identifier.citedreferenceMerkin, V. G., Milikh, G., Papadopoulos, K., Lyon, J., Dimant, Y. S., Sharma, A. S., Goodrich, C., & Wiltberger, M. ( 2005 ). Effect of anomalous electron heating on the transpolar potential in the LFM global MHD model. Geophysical Research Letters, 32, L22101. https://doi.org/10.1029/2005GL023315
dc.identifier.citedreferenceMerkin, V. G., Sharma, A. S., Papadopoulos, K., Milikh, G., Lyon, J., & Goodrich, C. ( 2005 ). Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation. Journal of Geophysical Research, 110, A09203. https://doi.org/10.1029/2004JA010993
dc.identifier.citedreferenceMerkine, V. G., Papadopoulos, K., Milikh, G., Sharma, A. S., Shao, X., Lyon, J., & Goodrich, C. ( 2003 ). Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling. Geophysical Research Letters, 30 ( 23 ), 2180. https://doi.org/10.1029/2003GL017903
dc.identifier.citedreferenceMoen, J., & Brekke, A. ( 1993 ). The solar flux influence on quiet time conductances in the auroral ionosphere. Geophysical Research Letters, 20 ( 10 ), 971 – 974. https://doi.org/10.1029/92GL02109
dc.identifier.citedreferenceMorley, S. K., Brito, T. V., & Welling, D. T. ( 2018 ). Measures of model performance based on the log accuracy ratio. Space Weather, 16, 69 – 88. https://doi.org/10.1002/2017SW001669
dc.identifier.citedreferenceMukhopadhyay, A. ( 2017 ). Statistical comparison of magnetopause distances and CPCP estimation by global MHD models ( Tech. Rep. )  https://doi.org/10.1002/essoar.10502157.1
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D. T., Burleigh, M., Ridley, A. J., Liemohn, M. W., Anderson, B. J., & Gjerloev, J. W. ( 2019 ). Conductance in the aurora: Influence of magnetospheric contributors. In AGU Fall Meeting Abstract (Vol.  2019, pp. SA41B – 3169 ). San Francisco, CA: American Geophysical Union. https://doi.org/10.1002/essoar.10502150.1
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D. T., Liemohn, M. W., Zou, S., & Ridley, A. J. ( 2018 ). Challenges in space weather prediction: Estimation of auroral conductance. In AGU fall meeting abstracts (Vol.  2018, pp. SA33B – 3462 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, A09207. https://doi.org/10.1029/2009JA014326
dc.identifier.citedreferenceOhtani, S., Wing, S., Merkin, V. G., & Higuchi, T. ( 2014 ). Solar cycle dependence of nightside field‐aligned currents: Effects of dayside ionospheric conductivity on the solar wind‐magnetosphere‐ionosphere coupling. Journal of Geophysical Research: Space Physics, 119, 322 – 334. https://doi.org/10.1002/2013JA019410
dc.identifier.citedreferenceOzturk, D. S., Zou, S., & Slavin, J. A. ( 2017 ). IMF By effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations. Journal of Geophysical Research: Space Physics, 122, 5028 – 5042. https://doi.org/10.1002/2017JA023903
dc.identifier.citedreferencePerlongo, N. J., Ridley, A. J., Liemohn, M. W., & Katus, R. M. ( 2017 ). The effect of ring current electron scattering rates on magnetosphere‐ionosphere coupling. Journal of Geophysical Research: Space Physics, 122, 4168 – 4189. https://doi.org/10.1002/2016JA023679
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & Zeeuw, D. L. D. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferencePujol, J. ( 2007 ). The solution of nonlinear inverse problems and the Levenberg‐Marquardt method. Geophysics, 72 ( 4 ), W1 – W16. https://doi.org/10.1190/1.2732552
dc.identifier.citedreferencePulkkinen, A., Kuznetsova, M., Ridley, A., Raeder, J., Vapirev, A., Weimer, D., Weigel, R. S., Wiltberger, M., Millward, G., Rastätter, L., Hesse, M., Singer, H. J., & Chulaki, A. ( 2011 ). Geospace environment modeling 2008–2009 challenge: Ground magnetic field perturbations. Space Weather, 9, S02004. https://doi.org/10.1029/2010SW000600
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J., & Weigel, R. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRaeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G., Mukai, T., Paterson, W. R., Sigwarth, J. B., Singer, H. J., & Slavin, J. A. ( 2001 ). Global simulation of the Geospace Environment Modeling substorm challenge event. Journal of Geophysical Research, 106 ( A1 ), 381 – 395. https://doi.org/10.1029/2000JA000605
dc.identifier.citedreferenceRastätter, L., Kuznetsova, M. M., Glocer, A., Welling, D., Meng, X., Raeder, J., Wiltberger, M., Jordanova, V. K., Yu, Y., Zaharia, S., Weigel, R. S., Sazykin, S., Boynton, R., Wei, H., Eccles, V., Horton, W., Mays, M. L., Gannon, J. ( 2013 ). Geospace environment modeling 2008–2009 challenge: Dst index. Space Weather, 11, 187 – 205. https://doi.org/10.1002/SWE.20036
dc.identifier.citedreferenceRichmond, A. D., & Kamide, Y. ( 1988 ). Mapping electrodynamic features of the high‐latitude ionosphere from localized observations—Technique. Journal of Geophysical Research, 93 ( A6 ), 5741 – 5759. https://doi.org/10.1029/JA093iA06p05741
dc.identifier.citedreferenceRidley, A. J., De Zeeuw, D. L., Gombosi, T. I., & Powell, K. G. ( 2001 ). Using steady state MHD results to predict the global state of the magnetosphere‐ionosphere system. Journal of Geophysical Research, 106 ( A12 ), 30,067 – 30,076. https://doi.org/10.1029/2000JA002233
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & De Zeeuw, D. L. ( 2004 ). Ionospheric control of the magnetosphere: Conductance. Annales Geophysicae, 22 ( 2 ), 567 – 584. https://doi.org/10.5194/angeo‐22‐567‐2004
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., Sokolov, I. V., Tóth, G., & Welling, D. T. ( 2010 ). Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 28 ( 8 ), 1589 – 1614. https://doi.org/10.5194/angeo‐28‐1589‐2010
dc.identifier.citedreferenceRidley, A. J., & Liemohn, M. W. ( 2002 ). A model‐derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 107 ( A8 ), 1151. https://doi.org/10.1029/2001JA000051
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.