Show simple item record

Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems

dc.contributor.authorYan, Dongxiang
dc.contributor.authorMa, Chengbin
dc.date.accessioned2021-02-04T21:53:40Z
dc.date.available2021-11-04 16:53:39en
dc.date.available2021-02-04T21:53:40Z
dc.date.issued2020-10
dc.identifier.citationYan, Dongxiang; Ma, Chengbin (2020). "Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems." IET Generation, Transmission & Distribution 14(19): 4217-4224.
dc.identifier.issn1751-8687
dc.identifier.issn1751-8695
dc.identifier.urihttps://hdl.handle.net/2027.42/166260
dc.publisherThe Institution of Engineering and Technology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherB0240Z Other topics in statistics
dc.subject.otherstochastic processes
dc.subject.otherphotovoltaic power systems
dc.subject.otherelectric vehicles
dc.subject.otherdistributed power generation
dc.subject.otherbattery storage plants
dc.subject.otherbattery powered vehicles
dc.subject.otherpower grids
dc.subject.otherdistribution networks
dc.subject.othersecondary cells
dc.subject.otherelectric vehicle
dc.subject.othercharging service
dc.subject.otherstochastic planning model
dc.subject.otherEV charging station
dc.subject.otherbattery
dc.subject.othertransformer
dc.subject.othercomprehensive EV charging demand model
dc.subject.otherEV stochastic charging behaviour
dc.subject.otherEV charging assignment model
dc.subject.otherA8630F Secondary cells
dc.subject.otherB8120J Distribution networks
dc.subject.otherB8250 Solar power stations and photovoltaic power systems
dc.subject.otherB8260 Other power stations and plants
dc.subject.otherB8410E Secondary cells
dc.subject.otherB8520 Transportation
dc.subject.otherB8120K Distributed power generation
dc.titleStochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166260/1/gtd2bf00020.pdf
dc.identifier.doi10.1049/iet-gtd.2019.1737
dc.identifier.doihttps://dx.doi.org/10.7302/183
dc.identifier.sourceIET Generation, Transmission & Distribution
dc.identifier.citedreferenceTeichert, O., Chang, F., Ongel, A. et al.: ‘ Joint optimization of vehicle battery pack capacity and charging infrastructure for electrified public bus systems ’, IEEE Trans. Transp. Electrif., 2019, 5, ( 3 ), pp. 672 – 682
dc.identifier.citedreferenceZhang, H., Moura, S.J., Hu, Z. et al.: ‘ PEV fast‐charging station siting and sizing on coupled transportation and power networks ’, IEEE Trans. Smart Grid, 2018, 9, ( 4 ), pp. 2595 – 2605
dc.identifier.citedreferenceSun, Z., Zhou, X., Du, J. et al.: ‘ When traffic flow meets power flow: on charging station deployment with budget constraints ’, IEEE Trans. Veh. Technol., 2017, 66, ( 4 ), pp. 2915 – 2926
dc.identifier.citedreferenceFazelpour, F., Vafaeipour, M., Rahbari, O. et al.: ‘ Intelligent optimization to integrate a plug‐in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics ’, Energy Convers. Manage., 2014, 77, ( 1 ), pp. 250 – 261
dc.identifier.citedreference‘National renewable energy laboratory’. Available at http://www.nrel.gov/, accessed 20 March 2020
dc.identifier.citedreferenceWu, X., Hu, X., Yin, X. et al.: ‘ Optimal battery sizing of a smart home via convex programming ’, Energy, 2017, 140, pp. 444 – 453
dc.identifier.citedreferenceShaaban, M.F., Mohamed, S., Ismail, M. et al.: ‘ Joint planning of smart EV charging stations and DGs in eco‐friendly remote hybrid microgrids ’, IEEE Trans. Smart Grid, 2019, 10, ( 5 ), pp. 5819 – 5830
dc.identifier.citedreferenceZheng, M., Meinrenken, C.J., Lackner, K.S.: ‘ Agent‐based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response ’, Appl. Energy, 2014, 126, ( C ), pp. 297 – 306
dc.identifier.citedreferenceLakshmi, S., Ganguly, S.: ‘ Multi‐objective planning for the allocation of PV‐BESS integrated open UPQC for peak load shaving of radial distribution networks ’, J. Energy Storage, 2019, 22, pp. 208 – 218
dc.identifier.citedreferenceSarikprueck, P., Lee, W., Kulvanitchaiyanunt, A. et al.: ‘ Bounds for optimal control of a regional plug‐in electric vehicle charging station system ’, IEEE Trans. Ind. Appl., 2018, 54, ( 2 ), pp. 977 – 986
dc.identifier.citedreferenceLi, Y., Zhao, T., Liu, C. et al.: ‘ An interactive decision‐making model based on energy and reserve for electric vehicles and power grid using generalized stackelberg game ’, IEEE Trans. Ind. Appl., 2019, 55, ( 4 ), pp. 3301 – 3309
dc.identifier.citedreferenceZhang, H., Hu, Z., Xu, Z. et al.: ‘ An integrated planning framework for different types of pev charging facilities in urban area ’, IEEE Trans. Smart Grid, 2016, 7, ( 5 ), pp. 2273 – 2284
dc.identifier.citedreferenceYao, W., Zhao, J., Wen, F. et al.: ‘ A multi‐objective collaborative planning strategy for integrated power distribution and electric vehicle charging systems ’, IEEE Trans. Power Syst., 2014, 29, ( 4 ), pp. 1811 – 1821
dc.identifier.citedreferenceSun, S., Yang, Q., Yan, W.: ‘ Hierarchical optimal planning approach for plug‐in electric vehicle fast charging stations based on temporal‐soc charging demand characterisation ’, IET Gener. Transm. Distrib., 2018, 12, ( 20 ), pp. 4388 – 4395
dc.identifier.citedreferenceHafez, O., Bhattacharya, K.: ‘ Optimal design of electric vehicle charging stations considering various energy resources ’, Renew. Energy, 2017, 107, pp. 576 – 589
dc.identifier.citedreferenceZhang, J., Li, K.J., Wang, M. et al.: ‘ A bi‐level program for the planning of an islanded microgrid including caes ’, IEEE Trans. Ind. Appl., 2016, 52, ( 4 ), pp. 2768 – 2777
dc.identifier.citedreferenceGuo, F., Inoa, E., Choi, W. et al.: ‘ Study on global optimization and control strategy development for a phev charging facility ’, IEEE Trans. Veh. Technol., 2012, 61, ( 6 ), pp. 2431 – 2441
dc.identifier.citedreferenceShojaabadi, S., Abapour, S., Abapour, M. et al.: ‘ Simultaneous planning of plug‐in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties ’, Renew. Energy, 2016, 99, pp. 237 – 252
dc.identifier.citedreferenceLiu, N., Chen, Q., Lu, X. et al.: ‘ A charging strategy for PV‐based battery switch stations considering service availability and self‐consumption of PV energy ’, IEEE Trans. Ind. Electron., 2015, 62, ( 8 ), pp. 4878 – 4889
dc.identifier.citedreferenceNegarestani, S., Fotuhi‐Firuzabad, M., Rastegar, M. et al.: ‘ Optimal sizing of storage system in a fast charging station for plug‐in hybrid electric vehicles ’, IEEE Trans. Transp. Electrif., 2016, 2, ( 4 ), pp. 443 – 453
dc.identifier.citedreferenceZhang, P., Qian, K., Zhou, C. et al.: ‘ A methodology for optimization of power systems demand due to electric vehicle charging load ’, IEEE Trans. Power Syst., 2012, 27, ( 3 ), pp. 1628 – 1636
dc.identifier.citedreferenceShu, W., Dong, Z.Y., Luo, F. et al.: ‘ Stochastic collaborative planning of electric vehicle charging stations and power distribution system ’, IEEE Trans. Ind. Inf., 2018, 14, ( 1 ), pp. 321 – 331
dc.identifier.citedreferenceKamankesh, H., Kavousi‐Fard Agelidis, V.G.A.: ‘ Optimal scheduling of renewable micro‐grids considering plug‐in hybrid electric vehicle charging demand ’, Energy, 2016, 100, pp. 285 – 297
dc.identifier.citedreferenceGjelaj, M., Træholt, C., Hashemi, S. et al.: ‘ Optimal design of DC fast‐charging stations for evs in low voltage grids ’. 2017 IEEE Transportation Electrification Conf. and Expo (ITEC), Chicago, USA, 2017, pp. 684 – 689
dc.identifier.citedreferenceKhaligh, A., D’Antonio, M.: ‘ Global trends in high‐power on‐board chargers for electric vehicles ’, IEEE Trans. Veh. Technol., 2019, 68, ( 4 ), pp. 3306 – 3324
dc.working.doi10.7302/183en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.