Show simple item record

A Tug‐of‐War Within the Hydrologic Cycle of a Continental Freshwater Basin

dc.contributor.authorGronewold, A. D.
dc.contributor.authorDo, H. X.
dc.contributor.authorMei, Y.
dc.contributor.authorStow, C. A.
dc.date.accessioned2021-03-02T21:42:39Z
dc.date.available2022-03-02 16:42:38en
dc.date.available2021-03-02T21:42:39Z
dc.date.issued2021-02-28
dc.identifier.citationGronewold, A. D.; Do, H. X.; Mei, Y.; Stow, C. A. (2021). "A Tug‐of‐War Within the Hydrologic Cycle of a Continental Freshwater Basin." Geophysical Research Letters 48(4): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/166344
dc.description.abstractThe past decade was the wettest on record for much of central and eastern North America. Near the beginning of this period of regional water abundance, however, drought conditions reinforced concerns that high temperatures and evapotranspiration foreshadowed a persistent imbalance in the hydrologic cycle characterized by water loss. These fluctuating hydrologic conditions were manifest by water level variability on the Laurentian Great Lakes, the largest system of lakes on Earth. We show that, during this period, the two dominant hydrologic forces acting directly on the vast surfaces of the lakes, overlake precipitation and overlake evaporation, have evolved differently. More specifically, we find that overlake precipitation has risen to extraordinary levels, while overlake evaporation diminished rapidly in 2014 (coinciding with a strong Arctic polar vortex deformation). Our findings offer a new perspective on the impacts of competing hydrologic forces on large freshwater systems in an era of climate change.Plain Language SummaryWe investigate the drivers of changes in water levels across the Laurentian Great Lakes over the past seven decades. The results show that a tug‐of‐war between evaporation and precipitation has been manifest by water level variability. Over the past two decades, over‐lake precipitation has risen to extraordinary levels while over‐lake evaporation diminished rapidly in 2014, setting the stage for the recent surge in water level. This finding highlights the collective impacts of competing hydrologic forces on freshwater systems in a warming climate.Key PointsAn intensifying tug‐of‐war between precipitation and evaporation is dominating water level variability on Earth’s largest lake systemCompeting forces are increasing or becoming more variable, setting the stage for oscillations between record high and record low levelsConditions evolved through abundant precipitation, and an abrupt decline in evaporation coinciding with a change in the Arctic polar vortex
dc.publisherCopernicus Climate Change Service Climate Data Store (CDS)
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprecipitation
dc.subject.otherwater balance
dc.subject.otherevaporation
dc.subject.otherlarge lakes
dc.subject.otherwater levels
dc.titleA Tug‐of‐War Within the Hydrologic Cycle of a Continental Freshwater Basin
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166344/1/grl61822.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166344/2/2020GL090374-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166344/3/grl61822_am.pdf
dc.identifier.doi10.1029/2020GL090374
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMillerd, F. ( 2011 ). The potential impact of climate change on Great Lakes international shipping. Climatic Change, 104 ( 3‐4 ), 629 – 652. https://doi.org/10.1007/s10584-010-9872-z
dc.identifier.citedreferenceMallya, G., Zhao, L., Song, C., Niyogi, D., & Govindaraju, R. S. ( 2013 ). 2012 Midwest drought in the United States. Journal of Hydrologic Engineering, 18 ( 7 ), 737 – 745.
dc.identifier.citedreferenceMason, L. A., Gronewold, A. D., Laitta, M., Gochis, D. J., Sampson, K., Read, L. K., et al. ( 2019 ). A new transboundary hydrographic dataset for advancing regional hydrological modeling and water resources management. Journal of Water Resources Planning and Management, 145 ( 6 ), 06019,004.
dc.identifier.citedreferenceMaurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., & Nijssen, B. ( 2002 ). A long‐term hydrologically based dataset of land surface fluxes and states for the conterminous United States. Journal of Climate, 15 ( 22 ), 3237 – 3251.
dc.identifier.citedreferenceMessager, M. L., Lehner, B., Grill, G., Nedeva, I., & Schmitt, O. ( 2016 ). Estimating the volume and age of water stored in global lakes using a geostatistical approach. Nature Communications, 7 ( 1 ), 1 – 11.
dc.identifier.citedreferenceMichalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., et al. ( 2013 ). Record‐setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 16 ), 6448 – 6452.
dc.identifier.citedreferenceMilly, P. C., & Dunne, K. A. ( 2017 ). A hydrologic drying bias in water‐resource impact analyses of anthropogenic climate change. JAWRA Journal of the American Water Resources Association, 53 ( 4 ), 822 – 838.
dc.identifier.citedreferenceMinallah, S., & Steiner, A. L. ( 2021 ). Role of the Atmospheric Moisture Budget in Defining the Precipitation Seasonality of the Great Lakes Region. Journal of Climate, 34 ( 2 ), 643 – 657. https://doi.org/10.1175/JCLI-D-19-0952.1
dc.identifier.citedreferenceMunoz, S. E., & Dee, S. G. ( 2017 ). El Niño increases the risk of lower Mississippi River flooding. Scientific Reports, 7 ( 1 ), 1772. https://doi.org/10.1038/s41598-017-01919-6
dc.identifier.citedreferenceNijssen, B., O’Donnell, G. M., Lettenmaier, D. P., Lohmann, D., & Wood, E. F. ( 2001 ). Predicting the discharge of global rivers. Journal of Climate, 14 ( 15 ), 3307 – 3323.
dc.identifier.citedreferenceNilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. ( 2005 ). Fragmentation and flow regulation of the world’s large river systems. Science, 308 ( 5720 ), 405 – 408.
dc.identifier.citedreferenceNotaro, M., Bennington, V., & Lofgren, B. M. ( 2015 ). Dynamical downscaling‐based projections of Great Lakes water levels. Journal of Climate, 28 ( 24 ), 9721 – 9745.
dc.identifier.citedreferenceNotaro, M., Holman, K. D., Zarrin, A., Fluck, E., Vavrus, S. J., & Bennington, V. ( 2013 ). Influence of the Laurentian Great Lakes on regional climate. Journal of Climate, 26 ( 3 ), 789 – 804.
dc.identifier.citedreferencePietroniro, A., Fortin, V., Kouwen, N., Neal, C., Turcotte, R., Davison, B., et al. ( 2007 ). Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale. Hydrology and Earth System Sciences, 11 ( 4 ), 1279 – 1294.
dc.identifier.citedreferenceRoque‐Malo, S., & Kumar, P. ( 2017 ). Patterns of change in high frequency precipitation variability over North America. Scientific Reports, 7 ( 1 ), 1 – 12.
dc.identifier.citedreferenceSeo, D.‐J. ( 1998 ). Real‐time estimation of rainfall fields using radar data and rain gage data. Journal of Hydrology, 208 ( 1–2 ), 37 – 52.
dc.identifier.citedreferenceSeo, D.‐J., & Breidenbach, J. P. ( 2002 ). Real‐time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. Journal of Hydrometeorology, 3 ( 2 ), 93 – 111.
dc.identifier.citedreferenceSmith, J. P., Hunter, T. S., Clites, A. H., Stow, C. A., Slawecki, T., Muhr, G. C., & Gronewold, A. D. ( 2016 ). An expandable web‐based platform for visually analyzing basin‐scale hydro‐climate time series data. Environmental Modelling & Software, 78, 97 – 105. https://doi.org/10.1016/j.envsoft.2015.12.005
dc.identifier.citedreferenceSwenson, S., & Wahr, J. ( 2009 ). Monitoring the water balance of Lake Victoria, East Africa, from space. Journal of Hydrology, 370 ( 1–4 ), 163 – 176.
dc.identifier.citedreferencevan den Dool, H. ( 2003 ). Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. Journal of Geophysical Research, 108 ( D16 ), 8617. https://doi.org/10.1029/2002jd003114
dc.identifier.citedreferenceWang, H., Schubert, S., Koster, R., Ham, Y.‐G., & Suarez, M. ( 2014 ). On the role of SST forcing in the 2011 and 2012 extreme US heat and drought: A study in contrasts. Journal of Hydrometeorology, 15 ( 3 ), 1255 – 1273.
dc.identifier.citedreferenceWright, D. M., Posselt, D. J., & Steiner, A. L. ( 2013 ). Sensitivity of lake‐effect snowfall to lake ice cover and temperature in the Great Lakes region. Monthly Weather Review, 141 ( 2 ), 670 – 689.
dc.identifier.citedreferenceXiao, K., Griffis, T. J., Baker, J. M., Bolstad, P. V., Erickson, M. D., Lee, X., Wood, J. D., Hu, C., Nieber, J. L. ( 2018 ). Evaporation from a temperate closed‐basin lake and its impact on present, past, and future water level. Journal of Hydrology, 561, 59 – 75. https://doi.org/10.1016/j.jhydrol.2018.03.059
dc.identifier.citedreferenceZhang, J., Tian, W., Chipperfield, M. P., Xie, F., & Huang, J. ( 2016 ). Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Climate Change, 6 ( 12 ), 1094.
dc.identifier.citedreferenceBenke, A. C., & Cushing, C. E. ( 2011 ). Rivers of North America, Burlington, MA: Elsevier Academic Press.
dc.identifier.citedreferenceApps, D., Fry, L. M., & Gronewold, A. D. ( 2020 ). Operational Seasonal Water Supply and Water Level Forecasting for the Laurentian Great Lakes. Journal of Water Resources Planning and Management, 146 ( 9 ), 04020072. http://dx.doi.org/10.1061/(asce)wr.1943-5452.0001214
dc.identifier.citedreferenceArgus, D. F., Ratliff, B., DeMets, C., Borsa, A. A., Wiese, D. N., Blewitt, G., et al. ( 2020 ). Rise of Great Lakes surface water, sinking of the upper Midwest of the United States, and viscous collapse of the forebulge of the former Laurentide ice sheet. Journal of Geophysical Research: Solid Earth, 125 ( 9 ), e2020JB019739.
dc.identifier.citedreferenceBasile, S. J., Rauscher, S. A., & Steiner, A. L. ( 2017 ). Projected precipitation changes within the Great Lakes and Western Lake Erie Basin: A multi‐model analysis of intensity and seasonality. International Journal of Climatology, 37 ( 14 ), 4864 – 4879.
dc.identifier.citedreferenceBlanken, P. D., Rouse, W. R., & Schertzer, W. M. ( 2003 ). Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. Journal of Hydrometeorology, 4 ( 4 ), 680 – 693.
dc.identifier.citedreferenceBryan, A. M., Steiner, A. L., & Posselt, D. J. ( 2015 ). Regional modeling of surface‐atmosphere interactions and their impact on Great Lakes hydroclimate. Journal of Geophysical Research: Atmospheres, 120 ( 3 ), 1044 – 1064.
dc.identifier.citedreferenceCael, B. B., Heathcote, A. J., & Seekell, D. A. ( 2017 ). The volume and mean depth of Earth’s lakes. Geophysical Research Letters, 44 ( 1 ), 209 – 218.
dc.identifier.citedreferenceCarter, E., & Steinschneider, S. ( 2018 ). Hydroclimatological drivers of extreme floods on Lake Ontario. Water Resources Research, 54 ( 7 ), 4461 – 4478.
dc.identifier.citedreferenceChao, P. ( 1999 ). Great Lakes water resources: climate change impact analysis with transient GCM scenarios. JAWRA Journal of the American Water Resources Association, 35 ( 6 ), 1499 – 1507.
dc.identifier.citedreferenceClites, A. H., Wang, J., Campbell, K. B., Gronewold, A. D., Assel, R. A., Bai, X., & Leshkevich, G. A. ( 2014 ). Cold water and high ice cover on Great Lakes in spring 2014. Eos, Transactions American Geophysical Union, 95 ( 34 ), 305 – 306.
dc.identifier.citedreferenceCopernicus Climate Change Service (C3S) ( 2017 ). ERA5: Fifth generation of ECMWF atmospheric reanalysis of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). Retrieved from https://cds.climate.copernicus.eu/cdsapp#!/home
dc.identifier.citedreferenceDeacu, D., Fortin, V., Klyszejko, E., Spence, C., & Blanken, P. D. ( 2012 ). Predicting the net basin supply to the Great Lakes with a hydrometeorological model. Journal of Hydrometeorology, 13 ( 6 ), 1739 – 1759.
dc.identifier.citedreferenceDo, H. X., Smith, J. P., Fry, L. M., & Gronewold, A. D. ( 2020 ). Seventy‐year long record of monthly water balance estimates for Earth’s largest lake system. Scientific Data, 7 ( 1 ), 276. https://doi.org/10.1038/s41597-020-00613-z
dc.identifier.citedreferenceDurnford, D., Fortin, V., Smith, G. C., Archambault, B., Deacu, D., Dupont, F., et al. ( 2018 ). Toward an operational water cycle prediction system for the Great Lakes and St. Lawrence River. Bulletin of the American Meteorological Society, 99 ( 3 ), 521 – 546.
dc.identifier.citedreferenceFeng, Z., Leung, R., Hagos, S., Houze, R. A., Burleyson, C. D., & Balaguru, K. ( 2016 ). More frequent intense and long‐lived storms dominate the springtime trend in central US rainfall. Nature Communications, 7 ( 1 ), 1 – 8.
dc.identifier.citedreferenceFry, L. M., Hunter, T. S., Phanikumar, M. S., Fortin, V., & Gronewold, A. D. ( 2013 ). Identifying streamgage networks for maximizing the effectiveness of regional water balance modeling. Water Resources Research, 49 ( 5 ), 2689 – 2700.
dc.identifier.citedreferenceFu, W., & Steinschneider, S. ( 2019 ). A diagnostic‐predictive assessment of winter precipitation over the Laurentian Great Lakes: effects of ENSO and other teleconnections. Journal of Hydrometeorology, 20 ( 1 ), 117 – 137.
dc.identifier.citedreferenceFujisaki‐Manome, A., Anderson, E. J., Kessler, J. A., Chu, P. Y., Wang, J., & Gronewold, A. D. ( 2020 ). Simulating Impacts of Precipitation on Ice Cover and Surface Water Temperature Across Large Lakes. Journal of Geophysical Research: Oceans, 125 ( 5 ), e2019JC015950. https://doi.org/10.1029/2019jc015950
dc.identifier.citedreferenceGaborit, E., Fortin, V., Xu, X., Seglenieks, F., Tolson, B. A., Fry, L. M., et al. ( 2017 ). A hydrological prediction system based on the SVS land‐surface scheme: Efficient calibration of GEM‐Hydro for streamflow simulation over the Lake Ontario basin. Hydrology and Earth System Sciences, 21 ( 9 ), 4825 – 4839.
dc.identifier.citedreferenceGroisman, P. Y., & Easterling, D. ( 1994 ). Variability and trends in total precipitation and snowfall over the United States and Canada. Journal of Climate, 7 ( 1 ), 184 – 205.
dc.identifier.citedreferenceGronewold, A. D., Anderson, E. J., Lofgren, B. M., Blanken, P. D., Wang, J., Smith, J. P., et al. ( 2015 ). Impact of extreme 2013–2014 winter conditions on Lake Michigan’s fall heat content, surface temperature, and evaporation. Geophysical Research Letters, 42 ( 9 ), 3364 – 3370.
dc.identifier.citedreferenceGronewold, A. D., Bruxer, J., Durnford, D., Smith, J. P., Clites, A. H., Seglenieks, F., et al. ( 2016 ). Hydrological drivers of record‐setting water level rise on Earth’s largest lake system. Water Resources Research, 52 ( 5 ), 4026 – 4042.
dc.identifier.citedreferenceGronewold, A. D., Clites, A. H., Hunter, T. S., & Stow, C. A. ( 2011 ). An appraisal of the Great Lakes advanced hydrologic prediction system. Journal of Great Lakes Research, 37 ( 3 ), 577 – 583.
dc.identifier.citedreferenceGronewold, A. D., Fortin, V., Caldwell, R., & Noel, J. ( 2018 ). Resolving hydrometeorological data discontinuities along an international border. Bulletin of the American Meteorological Society, 99 ( 5 ), 899 – 910.
dc.identifier.citedreferenceGronewold, A. D., & Rood, R. B. ( 2019 ). Recent water level changes across Earth’s largest lake system and implications for future variability. Journal of Great Lakes Research, 45 ( 1 ), 1 – 3.
dc.identifier.citedreferenceGronewold, A. D., Smith, J. P., Read, L. K., & Crooks, J. L. ( 2020 ). Reconciling the water balance of large lake systems. Advances in Water Resources, 137, 103505. https://doi.org/10.1016/j.advwatres.2020.103505
dc.identifier.citedreferenceGronewold, A. D., & Stow, C. A. ( 2014 ). Water loss from the Great Lakes. Science, 343 ( 6175 ), 1084 – 1085.
dc.identifier.citedreferenceGu, H., Jin, J., Wu, Y., Ek, M. B., & Subin, Z. ( 2013 ). Calibration and validation of lake surface temperature simulations with the coupled WRF‐lake model. Climatic Change, 129 ( 3 ), 471 – 483.
dc.identifier.citedreferenceHirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., et al. ( 2013 ). Global flood risk under climate change. Nature Climate Change, 3 ( 9 ), 816 – 821.
dc.identifier.citedreferenceHolman, K. D., Gronewold, A. D., Notaro, M., & Zarrin, A. ( 2012 ). Improving historical precipitation estimates over the Lake Superior basin. Geophysical Research Letters, 39 ( 3 ), L03405.
dc.identifier.citedreferenceHunter, T. S., Clites, A. H., Campbell, K. B., & Gronewold, A. D. ( 2015 ). Development and application of a monthly hydrometeorological database for the North American Great Lakes—Part I: Precipitation, evaporation, runoff, and air temperature. Journal of Great Lakes Research, 41 ( 1 ), 65 – 77.
dc.identifier.citedreferenceJasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. S., Yi, Y., & Fawcett, P. J. ( 2013 ). Terrestrial water fluxes dominated by transpiration. Nature, 496 ( 7445 ), 347 – 350.
dc.identifier.citedreferenceKammerer, J. C. ( 1990 ). Largest rivers in the United States – Report 87‐242. Technical Report. Reston, VA: USGS.
dc.identifier.citedreferenceKouwen, N. ( 1988 ). WATFLOOD: A micro‐computer based flood forecasting system based on real‐time weather radar. Canadian Water Resources Journal, 13 ( 1 ), 62 – 77.
dc.identifier.citedreferenceLabuhn, K., Gronewold, A. D., Calappi, T. J., MacNeil, A., Brown, C., & Anderson, E. J. ( 2020 ). Towards an operational flow forecasting system for the Upper Niagara River. Journal of Hydraulic Engineering, 146 ( 9 ), 05020006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001781
dc.identifier.citedreferenceLee, S. H., & Butler, A. H. ( 2020 ). The 2018–2019Arctic stratospheric polar vortex. Weather, 75 ( 2 ), 52 – 57.
dc.identifier.citedreferenceLehner, B., & Döll, P. ( 2004 ). Development and validation of a global database of lakes, reservoirs, and wetlands. Journal of Hydrology, 296 ( 104 ), 1 – 22.
dc.identifier.citedreferenceLehner, B., & Grill, G. ( 2013 ). Global river hydrology and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrological Processes, 27 ( 15 ), 2171 – 2186.
dc.identifier.citedreferenceLenters, J. D. ( 2001 ). Long‐term trends in the seasonal cycle of Great Lakes water levels. Journal of Great Lakes Research, 27 ( 3 ), 342 – 353.
dc.identifier.citedreferenceLespinas, F., Fortin, V., Roy, G., Rasmussen, P., & Stadnyk, T. ( 2015 ). Performance evaluation of the Canadian precipitation analysis (CaPA). Journal of Hydrometeorology, 16 ( 5 ), 2045 – 2064.
dc.identifier.citedreferenceLivneh, B., Bohn, T. J., Pierce, D. W., Munoz‐Arriola, F., Nijssen, B., Vose, R. S., et al. ( 2015 ). A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950–2013. Scientific Data, 2 ( 1 ), 1 – 12.
dc.identifier.citedreferenceLofgren, B. M., & Gronewold, A. D. ( 2013 ). Reconciling alternative approaches to projecting hydrologic impacts of climate change. Bulletin of the American Meteorological Society, 94 ( 10 ), ES133 – ES135.
dc.identifier.citedreferenceLofgren, B. M., & Gronewold, A. D. ( 2014 ). Water resources. In J. A. Winkler, J. A. Andresen, J. L. Hatfield, D. Bidwell, D. Brown (Eds.), Climate Change in the Midwest: A Synthesis Report for the National Climate Assessment (pp. 224 – 237 ). Washington, DC: Island Press.
dc.identifier.citedreferenceLofgren, B. M., Gronewold, A. D., Acciaioli, A., Cherry, J., Steiner, A. L., & Watkins, D. W. ( 2013 ). Methodological approaches to projecting the hydrologic impacts of climate change. Earth Interactions, 17 ( 22 ), 1 – 19.
dc.identifier.citedreferenceMahfouf, J.‐F., Brasnett, B., & Gagnon, S. ( 2007 ). A Canadian precipitation analysis (CaPA) project: Description and preliminary results. Atmosphere‐Ocean, 45 ( 1 ), 1 – 17.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.