Show simple item record

Effect of Decreasing Biological Lability on Dissolved Organic Matter Dynamics in Streams

dc.contributor.authorLi, Angang
dc.contributor.authorDrummond, Jennifer D.
dc.contributor.authorBowen, Jennifer C.
dc.contributor.authorCory, Rose M.
dc.contributor.authorKaplan, Louis A.
dc.contributor.authorPackman, Aaron I.
dc.date.accessioned2021-03-02T21:47:27Z
dc.date.available2022-03-02 16:47:24en
dc.date.available2021-03-02T21:47:27Z
dc.date.issued2021-02
dc.identifier.citationLi, Angang; Drummond, Jennifer D.; Bowen, Jennifer C.; Cory, Rose M.; Kaplan, Louis A.; Packman, Aaron I. (2021). "Effect of Decreasing Biological Lability on Dissolved Organic Matter Dynamics in Streams." Water Resources Research 57(2): n/a-n/a.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/166428
dc.description.abstractRespiration of dissolved organic matter (DOM) in streams contributes to the global CO2 efflux, yet this efflux has not been linked to specific DOM sources and their respective uptake rates. Further, removal of DOM inferred from longitudinal concentration gradients in river networks has been insufficient to account for observed CO2 outgassing. We hypothesize that understanding in‐stream dynamics of DOM, which is a heterogeneous mixture spanning a wide range of biological labilities, requires considering that DOM lability decreases during downstream transport. To test this hypothesis, we paired seasonal bioreactor measurements of DOM biological lability with whole‐stream tracer data from White Clay Creek, Pennsylvania, USA, and used a particle‐tracking model to predict in‐stream DOM dynamics. The model simulates continuous inputs of DOM and uses storage time in the stream bioactive regions plus kinetic parameters from bioreactors to assess differential uptake of DOM fractions (i.e., fractionation) in the stream. We compared predictions for in‐stream dynamics of bulk DOM concentration (quantified as dissolved organic carbon) and fluorescent DOM components. Our model‐data synthesis approach demonstrates that more labile fractions of DOM in stream water preferentially originate and are consumed within short travel distances, causing spiraling metrics to change with downstream distance. Our model can account for local sources of rapidly cycled labile DOM, providing a basis for improved interpretation of DOM dynamics in streams that can reconcile apparent discrepancies between respiratory outgassing of CO2 and longitudinal DOM concentration gradients within river networks.Plain Language SummaryIn streams, microorganisms metabolize naturally occurring organic molecules dissolved in streamwater and release carbon dioxide, which contributes to global carbon emissions. These organic molecules are part of a complex and diverse mixture including thousands of different chemical compounds that differ widely in susceptibility to biodegradation. We developed a mathematical model to describe changes in the pool of organic molecules flowing downstream, incorporating field and laboratory measurements of biological degradation of organic molecules and information about water flow into and out of zones that promote biological activity. We demonstrated that the molecules more susceptible to biodegradation are preferentially metabolized and become depleted over short travel distances downstream, while organic species less susceptible to biodegradation are transported farther downstream. Our model improves understanding of the transport and metabolism of organic molecules in streams, and explains factors that control the overall concentration of organic molecules in streams and rivers. The results help to reconcile discrepancies between estimates of carbon dioxide outgassing from streams and observations of organic carbon concentrations within streams.Key PointsDissolved organic matter (DOM) biological lability decreases with residence time in bioactive regions of the stream (defined as bioactive residence time)Decreasing biological lability, exchange into and residence times in bioactive regions influence in‐stream DOM dynamicsModel predictions show how the distribution of DOM fractions (i.e., fractionation) and spiraling metrics depend on in‐stream location
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otherFDOM
dc.subject.otherfractionation
dc.subject.otherparticle‐tracking model
dc.subject.otheruptake
dc.subject.otherDOM
dc.subject.otherbiological lability
dc.titleEffect of Decreasing Biological Lability on Dissolved Organic Matter Dynamics in Streams
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166428/1/wrcr25082.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166428/2/wrcr25082_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166428/3/2020WR027918-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2020WR027918
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceSawakuchi, H. O., Neu, V., Ward, N. D., de Lourdes, M., Barros, C., Valerio, A. M., et al. ( 2017 ). Carbon dioxide emissions along the lower Amazon River. Frontiers in Marine Science, 4, 76. https://doi.org/10.3389/fmars.2017.00076
dc.identifier.citedreferenceKaplan, L. A., & Newbold, J. D. ( 1995 ). Measurement of stream water biodegradable dissolved organic carbon with a plug‐flow bioreactor. Water Research, 29 ( 12 ), 2696 – 2706. https://doi.org/10.1016/0043-1354(95)00135-8
dc.identifier.citedreferenceWeyhenmeyer, G. A., Kortelainen, P., Sobek, S., Müller, R., & Rantakari, M. ( 2012 ). Carbon dioxide in Boreal surface waters: A comparison of lakes and streams. Ecosystems, 15 ( 8 ), 1295 – 1307. https://doi.org/10.1007/s10021-012-9585-4
dc.identifier.citedreferenceWiegner, T. N., Kaplan, L. A., Ziegler, S. E., & Findlay, R. H. ( 2015 ). Consumption of terrestrial dissolved organic carbon by stream microorganisms. Aquatic Microbial Ecology, 75 ( 3 ), 225 – 237. https://doi.org/10.3354/ame01761
dc.identifier.citedreferenceWehrli, B. ( 2013 ). Biogeochemistry: Conduits of the carbon cycle. Nature, 503 ( 7476 ), 346. https://doi.org/10.1038/503346a
dc.identifier.citedreferenceWelter, J. R., Benstead, J. P., Cross, W. F., Hood, J. M., Huryn, A. D., Johnson, P. W., & Williamson, T. J. ( 2015 ). Ecology, 96 ( 3 ), 603 – 610.
dc.identifier.citedreferenceWetzel, R. G. ( 1984 ). Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bulletin of Marine Science, 35 ( 3 ), 503 – 509.
dc.identifier.citedreferenceSawyer, A., Kaplan, L. A., Lazareva, O., & Michael, H. ( 2014 ). Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resources Research, 50 ( 6 ), 4877 – 4892. https://doi.org/10.1002/2013WR015101
dc.identifier.citedreferenceSeybold, E., & McGlynn, B. ( 2018 ). Hydrologic and biogeochemical drivers of dissolved organic carbon and nitrate uptake in a headwater stream network. Biogeochemistry, 138 ( 1 ), 23 – 48. https://doi.org/10.1007/s10533-018-0426-1
dc.identifier.citedreferenceSingh, S., Inamdar, S., Mitchell, M., & Mchale, P. P. ( 2014 ). Seasonal pattern of dissolved organic matter (DOM) in watershed sources: Influence of hydrologic flow paths and autumn leaf fall. Biogeochemistry, 118 ( 1–3 ), 321 – 337. https://doi.org/10.1007/s10533-013-9934-1
dc.identifier.citedreferenceSleighter, R. L., Cory, R. M., Kaplan, L. A., Abdulla, H. A., & Hatcher, P. G. ( 2014 ). A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. Journal of Geophysical Research: Biogeosciences, 119 ( 8 ), 1520 – 1537. https://doi.org/10.1002/2013JG002600
dc.identifier.citedreferenceStedmon, C. A., & Markager, S. ( 2005 ). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50 ( 2 ), 686 – 697. https://doi.org/10.4319/lo.2005.50.2.0686
dc.identifier.citedreferenceStream Solute Workshop. ( 1990 ). Concepts and methods for assessing solute dynamics in stream ecosystems. Journal of the North American Benthological Society, 9, 95 – 119. https://doi.org/10.2307/1467445
dc.identifier.citedreferenceVähätalo, A. V., Aarnos, H., & Mäntyniemi, S. ( 2010 ). Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry, 100, 227 – 240. https://doi.org/10.1007/s10533-010-9419-4
dc.identifier.citedreferenceVolk, C. J., Volk, C. B., & Kaplan, L. A. ( 1997 ). Chemical composition of biodegradable dissolved organic matter in stream water. Limnology and Oceanography, 42 ( 1 ), 39 – 44. https://doi.org/10.4319/lo.1997.42.1.0039
dc.identifier.citedreferenceWard, A. S., & Packman, A. I. ( 2019 ). Advancing our predictive understanding of river corridor exchange. Wiley Interdisciplinary Reviews: Water, 6 ( 1 ), e1327. https://doi.org/10.1002/wat2.1327
dc.identifier.citedreferenceWollheim, W. M., Peterson, B. J., Thomas, S. M., Hopkinson, C. H., & Vorosmarty, C. J. ( 2008 ). Dynamics of N removal over annual time periods in a suburban river network. Journal of Geophysical Research: Biogeosciences, 113, G03038. https://doi.org/10.1029/2007JG000660
dc.identifier.citedreferenceWollheim, W. M., Stewart, R. J., Aiken, G. R., Butler, K. D., Morse, N. B., & Salisbury, J. ( 2015 ). Removal of terrestrial DOC in aquatic ecosystems of a temperate river network. Geophysical Research Letters, 42 ( 16 ), 6671 – 6679. https://doi.org/10.1002/2015GL064647
dc.identifier.citedreferenceBear, J. ( 1972 ). Dynamics of fluids in porous media. New York, NY: Dover.
dc.identifier.citedreferenceBeavers, G. S., & Joseph, D. D. ( 1967 ). Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 30, 197 – 207 https://doi.org/10.1017/s0022112067001375
dc.identifier.citedreferenceChakraborty, P., Meerschaert, M. M., & Lim, C. Y. ( 2009 ). Parameter estimation for fractional transport: A particle‐tracking approach. Water Resources Research, 45 ( 10 ), W10415. https://doi.org/10.1029/2008WR007577
dc.identifier.citedreferenceDelay, F., Ackerer, P., & Danquigny, C. ( 2005 ). Simulating solute transport in porous or fractured formations using random walk particle tracking: A review. Vadose Zone Journal, 4 ( 2 ), 360 – 379. https://doi.org/10.2136/vzj2004.0125
dc.identifier.citedreferenceElliott, A. H., & Brooks, N. H. ( 1997a ). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 33 ( 1 ), 123 – 136. https://doi.org/10.1029/96wr02784
dc.identifier.citedreferenceElliott, A. H., & Brooks, N. H. ( 1997b ). Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research, 33 ( 1 ), 137 – 151. https://doi.org/10.1029/96WR02783
dc.identifier.citedreferenceFischer, H. B. ( 1966 ). Longitudinal dispersion in laboratory and natural streams (W. M. Keck Laboratory of Hydraulics and Water Resources Report 12). Pasadena, CA: California Institute of Technology. https://doi.org/10.7907/Z9F769HC
dc.identifier.citedreferenceFischer, H. B. ( 1967 ). The mechanics of dispersion in natural streams. Journal of the Hydraulics Division, 93 ( 6 ), 187 – 216.
dc.identifier.citedreferenceFischer, H. B., List, J. E., Koh, C. R., Imberger, J., & Brooks, N. H. ( 1979 ). Mixing in inland and coastal waters, San Diego: Academic.
dc.identifier.citedreferenceKinzelbach, W. ( 1988 ). The random walk method in pollutant transport simulation. In Custodio, E., Gurgui, A., & Ferreira, J. P. L. (Eds.), Groundwater flow and quality modelling (Vol. 224, pp. 227 – 245 ). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-2889-3_15
dc.identifier.citedreferenceManes, C., Poggi, D., & Ridolfi, L. ( 2011 ). Turbulent boundary layers over permeable walls: Scaling and near‐wall structure. Journal of Fluid Mechanics, 687, 141 – 170. https://doi.org/10.1017/jfm.2011.329
dc.identifier.citedreferenceMendoza, C., & Zhou, D. H. ( 1992 ). Effects of porous bed on turbulent stream flow above bed. Journal of Hydraulic Engineering: ASCE, 118 ( 9 ), 1222 – 1240. https://doi.org/10.1061/(asce)0733-9429
dc.identifier.citedreferenceNagaoka, H., & Ohgaki, S. ( 1990 ). Mass transfer mechanism in a porous riverbed. Water Research, 24 ( 4 ), 417 – 425. https://doi.org/10.1016/0043-1354(90)90223-s
dc.identifier.citedreferencePrickett, T. A., Naymik, T. G., Lonnquist, C. G., & Survey, I. S. W. ( 1981 ). A “random‐walk” solute transport model for selected groundwater quality evaluations. Illinois State Water Survey Bulletin, 65. 1 – 103.
dc.identifier.citedreferenceWetzel, R. G., Hatcher, P. G., & Bianchi, T. S. ( 1995 ). Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography, 40 ( 8 ), 1369 – 1380.
dc.identifier.citedreferenceZhou, D. H., & Mendoza, C. ( 1993 ). Flow through porous bed of turbulent stream. Journal of Engineering Mechanics: ASCE, 119 ( 2 ), 365 – 383. https://doi.org/10.1061/(asce)0733-9399
dc.identifier.citedreferenceAiken, G. R., Mcknight, D. M., Thorn, K., & Thurman, E. ( 1992 ). Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry, 18 ( 4 ), 567 – 573. https://doi.org/10.1016/0146-6380(92)90119-I
dc.identifier.citedreferenceAlexander, R. B., Boyer, E. W., Smith, R. A., Schwarz, G. E., & Moore, R. B. ( 2007 ). The role of headwater streams in downstream water quality. Journal of the American Water Resources Association, 43, 41 – 59. https://doi.org/10.1111/j.1752-1688.2007.00005.x
dc.identifier.citedreferenceAufdenkampe, A. K., Hedges, J. I., Richey, J. E., Krusche, A. V., & Llerena, C. A. ( 2001 ). Sorptive fractionation of dissolved organic nitrogen and amino acids onto fine sediments with the Amazon Basin. Limnology and Oceanography, 46, 1921 – 1935. https://doi.org/10.4319/lo.2001.46.8.1921
dc.identifier.citedreferenceBalcarczyk, K. L., Jones, J. B., Jaffé, R., & Maie, N. ( 2009 ). Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry, 94 ( 3 ), 255 – 270. https://doi.org/10.1007/s10533-009-9324-x
dc.identifier.citedreferenceBattin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packman, A. I. ( 2016 ). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14 ( 4 ), 251 – 263. https://doi.org/10.1038/nrmicro.2016.15
dc.identifier.citedreferenceBattin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., et al. ( 2008 ). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1 ( 2 ), 95 – 100. https://doi.org/10.1038/ngeo101
dc.identifier.citedreferenceBattin, T. J., Kaplan, L. A., Newbold, J. D., & Hendricks, S. P. ( 2003 ). A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biology, 48 ( 6 ), 995 – 1014. https://doi.org/10.1046/j.1365-2427.2003.01062.x
dc.identifier.citedreferenceBoano, F., Harvey, J. W., Marion, A., Packman, A. I., RevelliRidolfi, R. L., & Worman, A. ( 2014 ). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52 ( 4 ), 603 – 679. https://doi.org/10.1002/2012rg000417
dc.identifier.citedreferenceBoudreau, B. P., Arnosti, C., Jørgensen, B. B., & Canfield, D. E. ( 2008 ). Comment on "physical model for the decay and preservation of marine organic carbon”. Science, 319 ( 5870 ), 1616. https://doi.org/10.1126/science.1148589
dc.identifier.citedreferenceBoudreau, B. P., & Ruddick, B. R. ( 1991 ). On a reactive continuum representation of organic matter diagenesis. American Journal of Science, 291 ( 5 ), 507 – 538. https://doi.org/10.2475/ajs.291.5.507
dc.identifier.citedreferenceBowen, J. C., Kaplan, L. A., & Cory, R. M. ( 2020 ). Photodegradation disproportionately impacts biodegradation of semi‐labile DOM in streams. Limnology and Oceanography, 65 ( 1 ), 13 – 26. https://doi.org/10.1002/lno.11244
dc.identifier.citedreferenceBrown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. ( 2004 ). Toward a metabolic theory of ecology. Ecology, 85 ( 7 ), 1771 – 1789. https://doi.org/10.1890/03-9000
dc.identifier.citedreferenceCaissie, D. ( 2006 ). The thermal regime of rivers: a review. Freshwater Biology, 51 ( 8 ), 1389 – 1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
dc.identifier.citedreferenceCarlson, C. A. ( 2002 ). Production and removal processes. In D. A. Hansell, & C. A. Carlson (Eds.), Biogeochemistry of marine dissolved organic matter (pp. 91 – 139 ). Elsevier Science, Boston: Academic Press.
dc.identifier.citedreferenceCory, R. M., Crump, B. C., Dobkowski, J. A., & Kling, G. W. ( 2013 ). Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 9 ), 3429 – 3434. https://doi.org/10.1073/pnas.1214104110
dc.identifier.citedreferenceCory, R. M., & Kaplan, L. A. ( 2012 ). Biological lability of stream water fluorescent dissolved organic matter. Limnology & Oceanography, 57 ( 5 ), 1347 – 1360. https://doi.org/10.4319/lo.2012.57.5.1347
dc.identifier.citedreferenceCory, R. M., & Mcknight, D. M. ( 2005 ). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology, 39 ( 21 ), 8142 – 8149. https://doi.org/10.1021/es0506962
dc.identifier.citedreferenceCory, R. M., Ward, C. P., Crump, B. C., & Kling, G. W. ( 2014 ). Sunlight controls water column processing of carbon in arctic freshwater. Science, 345, 925 – 928. https://doi.org/10.1126/science.1253119
dc.identifier.citedreferencedel Giorgio, P. A., & Pace, M. L. ( 2008 ). Relative independence of dissolved organic carbon transport and processing in a large temperate river: The Hudson River as both pipe and reactor. Limnology and Oceanography, 53 ( 1 ), 185 – 197. https://doi.org/10.2307/40006160
dc.identifier.citedreferenceDemars, B. O., Russell Manson, J., Olafsson, J. S., Gislason, G. M., Gudmundsdottír, R., Woodward, G., et al. ( 2011 ). Temperature and the metabolic balance of streams. Freshwater Biology, 56 ( 6 ), 1106 – 1121. https://doi.org/10.1111/j.1365-2427.2010.02554.x
dc.identifier.citedreferenceFellman, J. B., Hood, E., D’amore, D. V., Edwards, R. T., & White, D. D. ( 2009a ). Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry, 95 ( 2–3 ), 277 – 293. https://doi.org/10.1007/s10533-009-9336-6
dc.identifier.citedreferenceFellman, J. B., Hood, E., Edwards, R. T., & Jones, J. B. ( 2009b ). Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams. Ecosystems, 12 ( 5 ), 747 – 759. https://doi.org/10.10007/s10021-009-9254-4
dc.identifier.citedreferenceFischer, H., & Pusch, M. ( 2001 ). Comparison of bacterial production in sediments, epiphyton and the pelagic zone of a lowland river. Freshwater Biology, 46 ( 10 ), 1335 – 1348. https://doi.org/10.1046/j.1365-2427.2001.00753.x
dc.identifier.citedreferenceGillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. L. ( 2001 ). Effects of size and temperature on metabolic rate. Science, 293 ( 5538 ), 2248 – 2251. https://doi.org/10.1126/science.1061967
dc.identifier.citedreferenceHarun, S., Baker, A., Bradley, C., & Pinay, G. ( 2016 ). Spatial and seasonal variations in the composition of dissolved organic matter in a tropical catchment: The Lower Kinabatangan River, Sabah, Malaysia. Environmental Sciences: Processes & Impacts, 18 ( 1 ), 137 – 150. https://doi.org/10.1039/C5EM00462D
dc.identifier.citedreferenceHarvey, J. W., & Gooseff, M. N. ( 2015 ). River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research, 51 ( 9 ), 6893 – 6922. https://doi.org/10.1002/2015WR017617
dc.identifier.citedreferenceHood, E., Fellman, J., Spencer, R. G., Hernes, P. J., Edwards, R., D’amore, D., & Scott, D. ( 2009 ). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature, 462 ( 7276 ), 1044. https://doi.org/10.1038/nature08580
dc.identifier.citedreferenceHullar, M. A., Kaplan, L. A., & Stahl, D. A. ( 2006 ). Recurring seasonal dynamics of microbial communities in stream habitats. Applied & Environmental Microbiology, 72 ( 1 ), 713 – 722. https://doi.org/10.1128/AEM.72.1.713-722.2006
dc.identifier.citedreferenceKaplan, L. A. ( 2019 ). Dissolved organic carbon concentrations in White Clay Creek, Pennsylvania 1977‐2017 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/60deae3675ff30109bf7a35cceaf719d
dc.identifier.citedreferenceKaplan, L. A. & Bott, T. L. ( 1982 ). Diel fluctuations of DOC generated by algae in a piedmont stream. Limnology and Oceanography, 27 ( 6 ), 1091 – 1100.
dc.identifier.citedreferenceKaplan, L. A., Newbold, J. D., Wiegner, T. N., & Ostrom, M. H. ( 2019 ). Stable isotope and conservative tracer data used to estimate uptake of stream water dissolved organic carbon (DOC) through a whole‐stream addition of a ¹³C‐DOC tracer coupled with laboratory measurements of bioavailability of the tracer and stream water DOC using lability profiling with bioreactors ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/b839940664e7c198a5472530978a1e3e
dc.identifier.citedreferenceKaplan, L. A., Wiegner, T. N., Newbold, J. D., Ostrom, P. H., & Gandhi, H. ( 2008 ). Untangling the complex issue of dissolved organic carbon uptake: a stable isotope approach. Freshwater Biology, 53 ( 5 ), 855 – 864. https://doi.org/10.1111/j.1365-2427.2007.01941.x
dc.identifier.citedreferenceKoehler, B., Wachenfeldt, E., Kothawala, D., & Tranvik, L. J. ( 2012 ). Reactivity continuum of dissolved organic carbon decomposition in lake water. Journal of Geophysical Research, 117, G01024. https://doi.org/10.1029/2011JG001793
dc.identifier.citedreferenceKothawala, D. N., Ji, X., Laudon, H., Ågren, A. M., Futter, M. N., Köhler, S. J., & Tranvik, L. J. ( 2015 ). The relative influence of land cover, hydrology, and in‐stream processing on the composition of dissolved organic matter in boreal streams. Journal of Geophysical Research: Biogeosciences, 120 ( 8 ), 1491 – 1505. https://doi.org/10.1002/2015JG002946
dc.identifier.citedreferenceLambert, T., Teodoru, C. R., Nyoni, F. C., Bouillon, S., Darchambeau, F., Massicotte, P., & Borges, A. V. ( 2016 ). Along‐stream transport and transformation of dissolved organic matter in a large tropical river. Biogeosciences, 13 ( 9 ), 2727 – 2741. https://doi.org/10.5194/bg-13-2727-2016
dc.identifier.citedreferenceLauerwald, R., Hartmann, J., Ludwig, W., & Moosdorf, N. ( 2012 ). Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America. Journal of Geophysical Research, 117, 1 – 19. https://doi.org/10.1029/2011JG001820
dc.identifier.citedreferenceLe Quéré, C., Moriarty, R., Andrew, R. M., Peters, G. P., Ciais, P., Friedlingstein, P., et al. ( 2015 ). Global carbon budget 2015. Earth System Science Data, 7, 47 – 85. https://doi.org/10.5194/essd-7-47-2015
dc.identifier.citedreferenceLi, A., Aubeneau, A. F., Bolster, D., Tank, J. L., & Packman, A. I. ( 2017 ). Covariation in patterns of turbulence‐driven hyporheic flow and denitrification enhances reach‐scale nitrogen removal. Water Resources Research, 53 ( 8 ), 6927 – 6944. https://doi.org/10.1002/2016WR019949
dc.identifier.citedreferenceLi, A., Aubeneau, A. F., King, T., Cory, R. M., Neilson, B. T., Bolster, D., & Packman, A. I. ( 2019 ). Effects of vertical hydrodynamic mixing on photomineralization of dissolved organic carbon in arctic surface waters. Environmental Sciences: Processes & Impacts, 21 ( 4 ), 748 – 760. https://doi.org/10.1039/c8em00455b
dc.identifier.citedreferenceMasese, F. O., Salcedo‐Borda, J. S., Gettel, G. M., Irvine, K., & Mcclain, M. E. ( 2017 ). Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry, 132 ( 1–2 ), 1 – 22. https://doi.org/10.1007/s10533-016-0269-6
dc.identifier.citedreferenceMcKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L., & Thorn, K. A. ( 1992 ). Sorption of dissolved organic carbon by hydrous aluminum and iron oxides occurring at the confluence of Deer Creek with the Snake River, Summit County, Colorado. Environmental Science & Technology, 26 ( 7 ), 1388 – 1396. https://doi.org/10.1021/es00031a017
dc.identifier.citedreferenceMei, Y., Hornberger, G. M., Kaplan, L. A., Newbold, J. D., & Aufdenkampe, A. K. ( 2014 ). The delivery of dissolved organic carbon from a forested hillslope to a headwater stream in southeastern Pennsylvania, USA. Water Resources Research, 50, 5774 – 5796. https://doi.org/10.1002/2014WR015635
dc.identifier.citedreferenceMinshall, G. W., Petersen, R. C., Cummins, K. W., Bott, T. L., Sedell, J. R., Cushing, C. E., & Vannote, R. L. ( 1983 ). Interbiome Comparison of Stream Ecosystem Dynamics. Ecological Monographs, 53 ( 1 ), 1 – 25.
dc.identifier.citedreferenceMoran, M. A., Sheldon, W. M., & Zepp, R. G. ( 2000 ). Carbon loss and optical property changes during long‐term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography, 45 ( 6 ), 1254 – 1264. https://doi.org/10.4319/lo.2000.45.6.1254
dc.identifier.citedreferenceNewbold, J. D. ( 1992 ). Cycles and spirals of nutrients. In P. Calow, & G. E. Petts (Eds.), The rivers handbook: Hydrological and ecological principles ( 1, pp. 379 – 408 ). Oxford, UK: Blackwell Scientific Publishing.
dc.identifier.citedreferenceNewbold, J. D., Bott, T. L., Kaplan, L. A., Dow, C. L., Jackson, J. K., Aufdenkampe, A. K., et al. ( 2006 ). Uptake of nutrients and organic C in streams in New York City drinking‐water‐supply watersheds. Journal of the North American Benthological Society, 25 ( 4 ), 998 – 1017. https://doi.org/10.1899/0887-3593(2006)025[0998:UONAOC]2.0.CO2
dc.identifier.citedreferenceNewbold, J. D., Bott, T., Kaplan, L. A., Sweeney, B., & Vannote, R. ( 1997 ). Organic matter dynamics in White Clay Creek, Pennsylvania, USA. Journal of the North American Benthological Society, 16 ( 1 ), 46 – 50. https://doi.org/10.2307/1468231
dc.identifier.citedreferenceNewbold, J. D., Elwood, J., O’Neill, R., & Sheldon, A. ( 1983 ). Phosphorus dynamics in a woodland stream ecosystem: a study of nutrient spiralling. Ecology, 64 ( 5 ), 1249 – 1265. https://doi.org/10.2307/1937833
dc.identifier.citedreferenceNewbold, J. D., Elwood, J. W., Oneill, R. V., & Vanwinkle, W. W. ( 1981 ). Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences, 38 ( 7 ), 860 – 863. https://doi.org/10.1139/f81-114
dc.identifier.citedreferenceNewbold, J. D., Mulholland, P. J., Elwood, J. W., & O’Neill, R. V. ( 1982 ). Organic Carbon Spiralling in Stream Ecosystems. Oikos, 38 ( 3 ), 266 – 272. https://doi.org/10.2307/3544663
dc.identifier.citedreferenceOsburn, C. L., Handsel, L. T., Mikan, M. P., Paerl, H. W., & Montgomery, M. T. ( 2012 ). Fluorescence tracking of dissolved and particulate organic matter quality in a river‐dominated estuary. Environmental Science & Technology, 46 ( 16 ), 8628 – 8636. https://doi.org/10.1021/es3007723
dc.identifier.citedreferenceParr, T. B., Cronan, C. S., Ohno, T., Findlay, S. E., Smith, S., & Simon, K. S. ( 2015 ). Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnology and Oceanography, 60 ( 3 ), 885 – 900. https://doi.org/10.1002/lno.10060
dc.identifier.citedreferenceParr, T. B., Ohno, T., Cronan, C. S., & Simon, K. S. ( 2014 ). ComPARAFAC: A library and tools for rapid and quantitative comparison of dissolved organic matter components resolved by Parallel Factor Analysis. Limnology and Oceanography: Methods, 12 ( 3 ), 114 – 125. https://doi.org/10.4319/lom.2014.12.114
dc.identifier.citedreferencePerkins, D. M., Yvon‐Durocher, G., Demars, B. O., Reiss, J., Pichler, D. E., Friberg, N., et al. ( 2012 ). Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. Global Change Biology, 18 ( 4 ), 1300 – 1311. https://doi.org/10.1111/j.1365-2486.2011.02597.x
dc.identifier.citedreferencePhinney, H. K., & McIntire, C. D. ( 1965 ). Effect of temperature on metabolism of periphyton communities developed in laboratory streams. Limnology and Oceanography, 10 ( 3 ), 341 – 345. https://doi.org/10.4319/lo.1965.10.3.0341
dc.identifier.citedreferenceRaymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., Mcdonald, C., Hoover, M., et al. ( 2013 ). Global carbon dioxide emissions from inland waters. Nature, 503 ( 7476 ), 355 – 359. https://doi.org/10.3389/fmars.2017.0007610.1038/nature12760
dc.identifier.citedreferenceRaymond, P. A., Saiers, J. E., & Sobczak, W. V. ( 2016 ). Hydrological and biogeochemical controls on watershed dissolved organic matter transport: Pulse‐shunt concept. Ecology, 97 ( 1 ), 5 – 16. https://doi.org/10.1890/14-1684.1
dc.identifier.citedreferenceRegnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. ( 2013 ). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6 ( 8 ), 597 – 607. https://doi.org/10.1038/ngeo1830
dc.identifier.citedreferenceRichey, J. E., Hedges, J. I., Devol, A. H., Quay, P. D., Victoria, R., & Martinelli, L. ( 1990 ). Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 35 ( 2 ), 352 – 371. https://doi.org/10.4319/lo.1990.35.2.0352
dc.identifier.citedreferenceRoulet, N., & Moore, T. R. ( 2006 ). Browning the waters. Nature, 444 ( 7117 ), 283 – 284. https://doi.org/10.1038/444283a
dc.identifier.citedreferenceRunkel, R. L. ( 1998 ). One‐dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. US Geological Survey Water Resources Investigation Report 98‐4018. 1 – 73. https://doi.org/10.3133/wri984018
dc.identifier.citedreferenceSaunders, G. W., Cummins, K. W., Gak, D. Z., Pieczynska, E., Straskrabova, V., & Wetzel, R. G. ( 1980 ). Organic matter and decomposers. In E. D. LeCren, & R. H. Lowe‐ McConnell (Eds.), The functioning of freshwater ecosystems (pp. 341 – 392 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceKaplan, L. A. & Bott, T. L. ( 1989 ). Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: Effects of temperature, water chemistry, and habitat. Limnology and Oceanography, 34 ( 4 ), 718 – 733.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.