Show simple item record

Age differences in functional network reconfiguration with working memory training

dc.contributor.authorIordan, Alexandru D.
dc.contributor.authorMoored, Kyle D.
dc.contributor.authorKatz, Benjamin
dc.contributor.authorCooke, Katherine A.
dc.contributor.authorBuschkuehl, Martin
dc.contributor.authorJaeggi, Susanne M.
dc.contributor.authorPolk, Thad A.
dc.contributor.authorPeltier, Scott J.
dc.contributor.authorJonides, John
dc.contributor.authorReuter‐lorenz, Patricia A.
dc.date.accessioned2021-04-06T02:10:09Z
dc.date.available2022-05-05 22:10:06en
dc.date.available2021-04-06T02:10:09Z
dc.date.issued2021-04-15
dc.identifier.citationIordan, Alexandru D.; Moored, Kyle D.; Katz, Benjamin; Cooke, Katherine A.; Buschkuehl, Martin; Jaeggi, Susanne M.; Polk, Thad A.; Peltier, Scott J.; Jonides, John; Reuter‐lorenz, Patricia A. (2021). "Age differences in functional network reconfiguration with working memory training." Human Brain Mapping 42(6): 1888-1909.
dc.identifier.issn1065-9471
dc.identifier.issn1097-0193
dc.identifier.urihttps://hdl.handle.net/2027.42/167029
dc.description.abstractDemanding cognitive functions like working memory (WM) depend on functional brain networks being able to communicate efficiently while also maintaining some degree of modularity. Evidence suggests that aging can disrupt this balance between integration and modularity. In this study, we examined how cognitive training affects the integration and modularity of functional networks in older and younger adults. Twenty three younger and 23 older adults participated in 10- days of verbal WM training, leading to performance gains in both age groups. Older adults exhibited lower modularity overall and a greater decrement when switching from rest to task, compared to younger adults. Interestingly, younger but not older adults showed increased task- related modularity with training. Furthermore, whereas training increased efficiency within, and decreased participation of, the default- mode network for younger adults, it enhanced efficiency within a task- specific salience/sensorimotor network for older adults. Finally, training increased segregation of the default- mode from frontoparietal/salience and visual networks in younger adults, while it diffusely increased between- network connectivity in older adults. Thus, while younger adults increase network segregation with training, suggesting more automated processing, older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age- related trajectories in functional network reorganization with WM training.We examined how working memory (WM) training affects the integration and modularity of functional networks in older and younger adults. Younger adults increase network segregation with training, suggesting more automated processing. Older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age- related trajectories in functional network reorganization with WM training.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othergraph theory
dc.subject.otherintrinsic activity
dc.subject.otherparticipation coefficient
dc.subject.otherSternberg task
dc.subject.othertask- related connectivity
dc.subject.othercingulo- opercular network
dc.subject.otherglobal efficiency
dc.titleAge differences in functional network reconfiguration with working memory training
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167029/1/hbm25337.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167029/2/hbm25337-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167029/3/hbm25337_am.pdf
dc.identifier.doi10.1002/hbm.25337
dc.identifier.sourceHuman Brain Mapping
dc.identifier.citedreferenceReuter- Lorenz, P. A., & Park, D. C. ( 2014 ). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24 ( 3 ), 355 - 370. https://doi.org/10.1007/s11065-014-9270-9
dc.identifier.citedreferenceSalmi, J., Nyberg, L., & Laine, M. ( 2018 ). Working memory training mostly engages general- purpose large- scale networks for learning. Neuroscience and Biobehavioral Reviews, 93, 108 - 122. https://doi.org/10.1016/j.neubiorev.2018.03.019
dc.identifier.citedreferenceSambataro, F., Murty, V. P., Callicott, J. H., Tan, H. Y., Das, S., Weinberger, D. R., & Mattay, V. S. ( 2010 ). Age- related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 31 ( 5 ), 839 - 852. https://doi.org/10.1016/j.neurobiolaging.2008.05.022
dc.identifier.citedreferenceSchaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, A. J., - ¦ Yeo, B. T. T. ( 2018 ). Local- global Parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 28 ( 9 ), 3095 - 3114. https://doi.org/10.1093/cercor/bhx179
dc.identifier.citedreferenceSchneider- Garces, N. J., Gordon, B. A., Brumback- Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., - ¦ Fabiani, M. ( 2010 ). Span, CRUNCH, and beyond: Working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22 ( 4 ), 655 - 669. https://doi.org/10.1162/jocn.2009.21230
dc.identifier.citedreferenceSchölvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A. ( 2010 ). Neural basis of global resting- state fMRI activity. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 22 ), 10238 - 10243. https://doi.org/10.1073/pnas.0913110107
dc.identifier.citedreferenceSeeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., - ¦ Greicius, M. D. ( 2007 ). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27 ( 9 ), 2349 - 2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
dc.identifier.citedreferenceShine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., - ¦ Poldrack, R. A. ( 2016 ). The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron, 92 ( 2 ), 544 - 554. https://doi.org/10.1016/j.neuron.2016.09.018
dc.identifier.citedreferenceSimmonite, M., & Polk, T. A. ( 2019 ). Independent components of neural activation associated with 100- days of cognitive training. Journal of Cognitive Neuroscience, 31 ( 6 ), 808 - 820. https://doi.org/10.1162/jocn_a_01396
dc.identifier.citedreferenceSong, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. ( 2014 ). Age- related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connectivity, 4 ( 9 ), 662 - 676. https://doi.org/10.1089/brain.2014.0286
dc.identifier.citedreferenceSpreng, R. N., Wojtowicz, M., & Grady, C. L. ( 2010 ). Reliable differences in brain activity between young and old adults: A quantitative meta- analysis across multiple cognitive domains. Neuroscience and Biobehavioral Reviews, 34 ( 8 ), 1178 - 1194. https://doi.org/10.1016/j.neubiorev.2010.01.009
dc.identifier.citedreferenceStanley, M., Moussa, M., Paolini, B., Lyday, R., Burdette, J., & Laurienti, P. ( 2013 ). Defining nodes in complex brain networks. Frontiers in Computational Neuroscience, 7, 169. https://doi.org/10.3389/fncom.2013.00169
dc.identifier.citedreferenceSternberg, S. ( 1966 ). High- speed scanning in human memory. Science, 153 ( 3736 ), 652 - 654.
dc.identifier.citedreferenceSun, F. T., Miller, L. M., & D’Esposito, M. ( 2004 ). Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. NeuroImage, 21 ( 2 ), 647 - 658. https://doi.org/10.1016/j.neuroimage.2003.09.056
dc.identifier.citedreferenceSutton, B. P., Noll, D. C., & Fessler, J. A. ( 2003 ). Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Transactions on Medical Imaging, 22 ( 2 ), 178 - 188. https://doi.org/10.1109/TMI.2002.808360
dc.identifier.citedreferenceTriana, A. M., Glerean, E., Saramäki, J., & Korhonen, O. ( 2020 ). Effects of spatial smoothing on group- level differences in functional brain networks. Network Neuroscience, 4 ( 3 ), 556 - 574. https://doi.org/10.1162/netn_a_00132
dc.identifier.citedreferenceTurk- Browne, N. B. ( 2013 ). Functional interactions as big data in the human brain. Science, 342 ( 6158 ), 580 - 584. https://doi.org/10.1126/science.1238409
dc.identifier.citedreferencevan den Heuvel, M. P., de Lange, S. C., Zalesky, A., Seguin, C., Yeo, B. T. T., & Schmidt, R. ( 2017 ). Proportional thresholding in resting- state fMRI functional connectivity networks and consequences for patient- control connectome studies: Issues and recommendations. NeuroImage, 152, 437 - 449. https://doi.org/10.1016/j.neuroimage.2017.02.005
dc.identifier.citedreferencevan den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. ( 2009 ). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29 ( 23 ), 7619 - 7624. https://doi.org/10.1523/jneurosci.1443-09.2009
dc.identifier.citedreferenceVarangis, E., Razlighi, Q., Habeck, C. G., Fisher, Z., & Stern, Y. ( 2019 ). Between- network functional connectivity is modified by age and cognitive task domain. Journal of Cognitive Neuroscience, 31 ( 4 ), 607 - 622. https://doi.org/10.1162/jocn_a_01368
dc.identifier.citedreferenceVatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. ( 2015 ). Default mode dynamics for global functional integration. The Journal of Neuroscience, 35 ( 46 ), 15254 - 15262. https://doi.org/10.1523/jneurosci.2135-15.2015
dc.identifier.citedreferenceWang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., - ¦ Wang, Y. ( 2009 ). Altered small- world brain functional networks in children with attention- deficit/hyperactivity disorder. Human Brain Mapping, 30 ( 2 ), 638 - 649. https://doi.org/10.1002/hbm.20530
dc.identifier.citedreferenceWatts, D. J., & Strogatz, S. H. ( 1998 ). Collective dynamics of - small- world- networks. Nature, 393 ( 6684 ), 440 - 442. https://doi.org/10.1038/30918
dc.identifier.citedreferenceWestphal, A. J., Wang, S., & Rissman, J. ( 2017 ). Episodic memory retrieval benefits from a less modular brain network organization. The Journal of Neuroscience, 37 ( 13 ), 3523 - 3531. https://doi.org/10.1523/jneurosci.2509-16.2017
dc.identifier.citedreferenceWhitfield- Gabrieli, S., & Nieto- Castanon, A. ( 2012 ). Conn: A functional connectivity toolbox for correlated and Anticorrelated brain networks. Brain Connectivity, 2 ( 3 ), 125 - 141. https://doi.org/10.1089/brain.2012.0073
dc.identifier.citedreferenceWig, G. S. ( 2017 ). Segregated Systems of Human Brain Networks. Trends in Cognitive Sciences, 21 ( 12 ), 981 - 996. https://doi.org/10.1016/j.tics.2017.09.006
dc.identifier.citedreferencevan Wijk, B. C. M., Stam, C. J., & Daffertshofer, A. ( 2010 ). Comparing brain networks of different size and connectivity density using graph theory. PLoS One, 5 ( 10 ), e13701. https://doi.org/10.1371/journal.pone.0013701
dc.identifier.citedreferenceYeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., - ¦ Buckner, R. L. ( 2011 ). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106 ( 3 ), 1125 - 1165. https://doi.org/10.1152/jn.00338.2011
dc.identifier.citedreferenceYue, Q., Martin, R. C., Fischer- Baum, S., Ramos- Nunez, A. I., Ye, F., & Deem, M. W. ( 2017 ). Brain modularity mediates the relation between task complexity and performance. Journal of Cognitive Neuroscience, 29 ( 9 ), 1532 - 1546. https://doi.org/10.1162/jocn_a_01142
dc.identifier.citedreferenceZalesky, A., Fornito, A., & Bullmore, E. ( 2012 ). On the use of correlation as a measure of network connectivity. NeuroImage, 60 ( 4 ), 2096 - 2106. https://doi.org/10.1016/j.neuroimage.2012.02.001
dc.identifier.citedreferenceZalesky, A., Fornito, A., & Bullmore, E. T. ( 2010 ). Network- based statistic: Identifying differences in brain networks. NeuroImage, 53 ( 4 ), 1197 - 1207. https://doi.org/10.1016/j.neuroimage.2010.06.041
dc.identifier.citedreferenceZalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., & Breakspear, M. ( 2016 ). Connectome sensitivity or specificity: Which is more important? NeuroImage, 142, 407 - 420. https://doi.org/10.1016/j.neuroimage.2016.06.035
dc.identifier.citedreferenceZuo, N., Yang, Z., Liu, Y., Li, J., & Jiang, T. ( 2018 ). Core networks and their reconfiguration patterns across cognitive loads. Human Brain Mapping, 39 ( 9 ), 3546 - 3557. https://doi.org/10.1002/hbm.24193
dc.identifier.citedreferenceFornito, A., Zalesky, A., & Breakspear, M. ( 2013 ). Graph analysis of the human connectome: Promise, progress, and pitfalls. NeuroImage, 80, 426 - 444. https://doi.org/10.1016/j.neuroimage.2013.04.087
dc.identifier.citedreferenceOnoda, K., Ishihara, M., & Yamaguchi, S. ( 2012 ). Decreased functional connectivity by aging is associated with cognitive decline. Journal of Cognitive Neuroscience, 24 ( 11 ), 2186 - 2198. https://doi.org/10.1162/jocn_a_00269
dc.identifier.citedreferenceOnoda, K., & Yamaguchi, S. ( 2013 ). Small- worldness and modularity of the resting- state functional brain network decrease with aging. Neuroscience Letters, 556, 104 - 108. https://doi.org/10.1016/j.neulet.2013.10.023
dc.identifier.citedreferenceSummerfield, C., Greene, M., Wager, T., Egner, T., Hirsch, J., & Mangels, J. ( 2006 ). Neocortical connectivity during episodic memory formation. PLoS Biology, 4 ( 5 ), e128. https://doi.org/10.1371/journal.pbio.0040128
dc.identifier.citedreferenceAchard, S., & Bullmore, E. ( 2007 ). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3 ( 2 ), e17. https://doi.org/10.1371/journal.pcbi.0030017
dc.identifier.citedreferenceAlakorkko, T., Saarimaki, H., Glerean, E., Saramaki, J., & Korhonen, O. ( 2017 ). Effects of spatial smoothing on functional brain networks. The European Journal of Neuroscience, 46, 2471 - 2480. https://doi.org/10.1111/ejn.13717
dc.identifier.citedreferenceAshburner, J. ( 2007 ). A fast diffeomorphic image registration algorithm. NeuroImage, 38 ( 1 ), 95 - 113. https://doi.org/10.1016/j.neuroimage.2007.07.007
dc.identifier.citedreferenceBassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer- Lindenberg, A. ( 2008 ). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28 ( 37 ), 9239 - 9248. https://doi.org/10.1523/jneurosci.1929-08.2008
dc.identifier.citedreferenceBassett, D. S., Bullmore, E. T., Meyer- Lindenberg, A., Apud, J. A., Weinberger, D. R., & Coppola, R. ( 2009 ). Cognitive fitness of cost- efficient brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 28 ), 11747 - 11752. https://doi.org/10.1073/pnas.0903641106
dc.identifier.citedreferenceBehzadi, Y., Restom, K., Liau, J., & Liu, T. T. ( 2007 ). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37 ( 1 ), 90 - 101. https://doi.org/10.1016/j.neuroimage.2007.04.042
dc.identifier.citedreferenceBetzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.- N., & Sporns, O. ( 2014 ). Changes in structural and functional connectivity among resting- state networks across the human lifespan. NeuroImage, 102, 345 - 357. https://doi.org/10.1016/j.neuroimage.2014.07.067
dc.identifier.citedreferenceBlondel, V. D., Guillaume, J.- L., Lambiotte, R., & Lefebvre, E. ( 2008 ). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008 ( 10 ), P10008. https://doi.org/10.1088/1742-5468/2008/10/p10008
dc.identifier.citedreferenceBola, M., & Sabel, B. A. ( 2015 ). Dynamic reorganization of brain functional networks during cognition. NeuroImage, 114, 398 - 413. https://doi.org/10.1016/j.neuroimage.2015.03.057
dc.identifier.citedreferenceBraun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk- Seiferth, N., Haddad, L., - ¦ Bassett, D. S. ( 2015 ). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences, 112 ( 37 ), 11678 - 11683. https://doi.org/10.1073/pnas.1422487112
dc.identifier.citedreferenceBressler, S. L., & Menon, V. ( 2010 ). Large- scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14 ( 6 ), 277 - 290. https://doi.org/10.1016/j.tics.2010.04.004
dc.identifier.citedreferenceBullmore, E., & Sporns, O. ( 2009 ). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10 ( 3 ), 186 - 198. https://doi.org/10.1038/nrn2575
dc.identifier.citedreferenceCao, H., Plichta, M. M., Schäfer, A., Haddad, L., Grimm, O., Schneider, M., - ¦ Tost, H. ( 2014 ). Test- retest reliability of fMRI- based graph theoretical properties during working memory, emotion processing, and resting state. NeuroImage, 84, 888 - 900. https://doi.org/10.1016/j.neuroimage.2013.09.013
dc.identifier.citedreferenceCao, M., Wang, J.- H., Dai, Z.- J., Cao, X.- Y., Jiang, L.- L., Fan, F.- M., - ¦ He, Y. ( 2014 ). Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience, 7, 76 - 93. https://doi.org/10.1016/j.dcn.2013.11.004
dc.identifier.citedreferenceCappell, K. A., Gmeindl, L., & Reuter- Lorenz, P. A. ( 2010 ). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46 ( 4 ), 462 - 473. https://doi.org/10.1016/j.cortex.2009.11.009
dc.identifier.citedreferenceCassady, K., Gagnon, H., Freiburger, E., Lalwani, P., Simmonite, M., Park, D. C., - ¦ Polk, T. A. ( 2020 ). Network segregation varies with neural distinctiveness in sensorimotor cortex. NeuroImage, 212, 116663. https://doi.org/10.1016/j.neuroimage.2020.116663
dc.identifier.citedreferenceCassady, K., Gagnon, H., Lalwani, P., Simmonite, M., Foerster, B., Park, D., - ¦ Polk, T. A. ( 2019 ). Sensorimotor network segregation declines with age and is linked to GABA and to sensorimotor performance. NeuroImage, 186, 234 - 244. https://doi.org/10.1016/j.neuroimage.2018.11.008
dc.identifier.citedreferenceChai, X. J., Castanon, A. N., Ongur, D., & Whitfield- Gabrieli, S. ( 2012 ). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59 ( 2 ), 1420 - 1428. https://doi.org/10.1016/j.neuroimage.2011.08.048
dc.identifier.citedreferenceChan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. ( 2014 ). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), E4997 - E5006. https://doi.org/10.1073/pnas.1415122111
dc.identifier.citedreferenceChong, J. S. X., Ng, K. K., Tandi, J., Wang, C., Poh, J.- H., Lo, J. C., - ¦ Zhou, J. H. ( 2019 ). Longitudinal changes in the cerebral cortex functional Organization of Healthy Elderly. The Journal of Neuroscience, 39 ( 28 ), 5534 - 5550. https://doi.org/10.1523/JNEUROSCI.1451-18.2019
dc.identifier.citedreferenceCocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. ( 2013 ). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17 ( 10 ), 493 - 501. https://doi.org/10.1016/j.tics.2013.08.006
dc.identifier.citedreferenceCohen, J. R., & D’Esposito, M. ( 2016 ). The segregation and integration of distinct brain networks and their relationship to cognition. Journal of Neuroscience, 36 ( 48 ), 12083 - 12094. https://doi.org/10.1523/jneurosci.2965-15.2016
dc.identifier.citedreferenceCole, M. W., Ito, T., Schultz, D., Mill, R., Chen, R., & Cocuzza, C. ( 2019 ). Task activations produce spurious but systematic inflation of task functional connectivity estimates. NeuroImage, 189, 1 - 18. https://doi.org/10.1016/j.neuroimage.2018.12.054
dc.identifier.citedreferenceCole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. ( 2013 ). Multi- task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16 ( 9 ), 1348 - 1355. https://doi.org/10.1038/nn.3470
dc.identifier.citedreferenceCole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. ( 2014 ). Intrinsic and task- evoked network architectures of the human brain. Neuron, 83 ( 1 ), 238 - 251. https://doi.org/10.1016/j.neuron.2014.05.014
dc.identifier.citedreferenceCorte, V. L., Sperduti, M., Malherbe, C., Vialatte, F., Lion, S., Gallarda, T., - ¦ Piolino, P. ( 2016 ). Cognitive decline and reorganization of functional connectivity in healthy aging: The pivotal role of the salience network in the prediction of age and cognitive performances. Frontiers in Aging Neuroscience, 8, 204. https://doi.org/10.3389/fnagi.2016.00204
dc.identifier.citedreferenceCrossley, N. A., Mechelli, A., Vertes, P. E., Winton- Brown, T. T., Patel, A. X., Ginestet, C. E., - ¦ Bullmore, E. T. ( 2013 ). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110 ( 28 ), 11583 - 11588. https://doi.org/10.1073/pnas.1220826110
dc.identifier.citedreferenceDamoiseaux, J. S. ( 2017 ). Effects of aging on functional and structural brain connectivity. NeuroImage, 160, 32 - 40. https://doi.org/10.1016/j.neuroimage.2017.01.077
dc.identifier.citedreferenceDehaene, S., Kerszberg, M., & Changeux, J. P. ( 1998 ). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences of the United States of America, 95 ( 24 ), 14529 - 14534. https://doi.org/10.1073/pnas.95.24.14529
dc.identifier.citedreferenceDosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. ( 2008 ). A dual- networks architecture of top- down control. Trends in Cognitive Sciences, 12 ( 3 ), 99 - 105. https://doi.org/10.1016/j.tics.2008.01.001
dc.identifier.citedreferenceDosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., - ¦ Petersen, S. E. ( 2007 ). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104 ( 26 ), 11073 - 11078. https://doi.org/10.1073/pnas.0704320104
dc.identifier.citedreferenceDosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., - ¦ Petersen, S. E. ( 2006 ). A core system for the implementation of task sets. Neuron, 50 ( 5 ), 799 - 812. https://doi.org/10.1016/j.neuron.2006.04.031
dc.identifier.citedreferenceDwyer, D. B., Harrison, B. J., Yucel, M., Whittle, S., Zalesky, A., Pantelis, C., - ¦ Fornito, A. ( 2014 ). Large- scale brain network dynamics supporting adolescent cognitive control. The Journal of Neuroscience, 34 ( 42 ), 14096 - 14107. https://doi.org/10.1523/jneurosci.1634-14.2014
dc.identifier.citedreferenceFerreira, L. K., & Busatto, G. F. ( 2013 ). Resting- state functional connectivity in normal brain aging. Neuroscience & Biobehavioral Reviews, 37 ( 3 ), 384 - 400. https://doi.org/10.1016/j.neubiorev.2013.01.017
dc.identifier.citedreferenceFinc, K., Bonna, K., He, X., Lydon- Staley, D. M., Kühn, S., Duch, W., & Bassett, D. S. ( 2020 ). Dynamic reconfiguration of functional brain networks during working memory training. Nature Communications, 11 ( 1 ), 2435. https://doi.org/10.1038/s41467-020-15631-z
dc.identifier.citedreferenceFinc, K., Bonna, K., Lewandowska, M., Wolak, T., Nikadon, J., Dreszer, J., - ¦ Kuhn, S. ( 2017 ). Transition of the functional brain network related to increasing cognitive demands. Human Brain Mapping, 38 ( 7 ), 3659 - 3674. https://doi.org/10.1002/hbm.23621
dc.identifier.citedreferenceFox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. ( 2005 ). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 27 ), 9673 - 9678. https://doi.org/10.1073/pnas.0504136102
dc.identifier.citedreferenceGallen, C. L., Baniqued, P. L., Chapman, S. B., Aslan, S., Keebler, M., Didehbani, N., & D’Esposito, M. ( 2016 ). Modular brain network organization predicts response to cognitive training in older adults. PLoS One, 11 ( 12 ), e0169015. https://doi.org/10.1371/journal.pone.0169015
dc.identifier.citedreferenceGallen, C. L., & D’Esposito, M. ( 2019 ). Brain modularity: A biomarker of intervention- related plasticity. Trends in Cognitive Sciences, 23 ( 4 ), 293 - 304. https://doi.org/10.1016/j.tics.2019.01.014
dc.identifier.citedreferenceGallen, C. L., Turner, G. R., Adnan, A., & D’Esposito, M. ( 2016 ). Reconfiguration of brain network architecture to support executive control in aging. Neurobiology of Aging, 44, 42 - 52. https://doi.org/10.1016/j.neurobiolaging.2016.04.003
dc.identifier.citedreferenceGarrison, K. A., Scheinost, D., Finn, E. S., Shen, X., & Constable, R. T. ( 2015 ). The (in)stability of functional brain network measures across thresholds. NeuroImage, 118, 651 - 661. https://doi.org/10.1016/j.neuroimage.2015.05.046
dc.identifier.citedreferenceGeerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. ( 2015 ). A brain- wide study of age- related changes in functional connectivity. Cerebral Cortex, 25 ( 7 ), 1987 - 1999. https://doi.org/10.1093/cercor/bhu012
dc.identifier.citedreferenceGeerligs, L., Tsvetanov, K. A., & Henson, R. N. ( 2017 ). Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging. Human Brain Mapping, 38 ( 8 ), 4125 - 4156. https://doi.org/10.1002/hbm.23653
dc.identifier.citedreferenceGodwin, D., Barry, R. L., & Marois, R. ( 2015 ). Breakdown of the brain’s functional network modularity with awareness. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 12 ), 3799 - 3804. https://doi.org/10.1073/pnas.1414466112
dc.identifier.citedreferenceGood, B. H., de Montjoye, Y.- A., & Clauset, A. ( 2010 ). Performance of modularity maximization in practical contexts. Physical Review E, 81 ( 4 ), 046106. https://doi.org/10.1103/PhysRevE.81.046106
dc.identifier.citedreferenceGrady, C. ( 2012 ). The cognitive neuroscience of ageing. Nature Reviews. Neuroscience, 13 ( 7 ), 491 - 505. https://doi.org/10.1038/nrn3256
dc.identifier.citedreferenceGrady, C., Sarraf, S., Saverino, C., & Campbell, K. ( 2016 ). Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiology of Aging, 41, 159 - 172. https://doi.org/10.1016/j.neurobiolaging.2016.02.020
dc.identifier.citedreferenceGuimerà, R., & Amaral, L. A. N. ( 2005 ). Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, 2005 ( 02 ), P02001.
dc.identifier.citedreferenceHe, X., Qin, W., Liu, Y., Zhang, X., Duan, Y., Song, J., - ¦ Yu, C. ( 2014 ). Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 35 ( 7 ), 3446 - 3464. https://doi.org/10.1002/hbm.22414
dc.identifier.citedreferenceHearne, L. J., Cocchi, L., Zalesky, A., & Mattingley, J. B. ( 2017 ). Reconfiguration of brain network architectures between resting- state and complexity- dependent cognitive reasoning. The Journal of Neuroscience, 37 ( 35 ), 8399 - 8411. https://doi.org/10.1523/JNEUROSCI.0485-17.2017
dc.identifier.citedreferenceHeinzel, S., Lorenz, R. C., Brockhaus, W. R., Wustenberg, T., Kathmann, N., Heinz, A., & Rapp, M. A. ( 2014 ). Working memory load- dependent brain response predicts behavioral training gains in older adults. The Journal of Neuroscience, 34 ( 4 ), 1224 - 1233. https://doi.org/10.1523/jneurosci.2463-13.2014
dc.identifier.citedreferenceHuang, A. S., Klein, D. N., & Leung, H. C. ( 2016 ). Load- related brain activation predicts spatial working memory performance in youth aged 9- 12 and is associated with executive function at earlier ages. Developmental Cognitive Neuroscience, 17, 1 - 9. https://doi.org/10.1016/j.dcn.2015.10.007
dc.identifier.citedreferenceHughes, C., Faskowitz, J., Cassidy, B. S., Sporns, O., & Krendl, A. C. ( 2020 ). Aging relates to a disproportionately weaker functional architecture of brain networks during rest and task states. NeuroImage, 209, 116521. https://doi.org/10.1016/j.neuroimage.2020.116521
dc.identifier.citedreferenceIordan, A. D., Cooke, K. A., Moored, K. D., Katz, B., Buschkuehl, M., Jaeggi, S. M., - ¦ Reuter- Lorenz, P. A. ( 2018 ). Aging and network properties: Stability over time and links with learning during working memory training. Frontiers in Aging Neuroscience, 9, 419. https://doi.org/10.3389/fnagi.2017.00419
dc.identifier.citedreferenceIordan, A. D., Cooke, K. A., Moored, K. D., Katz, B., Buschkuehl, M., Jaeggi, S. M., - ¦ Reuter- Lorenz, P. A. ( 2020 ). Neural correlates of working memory training: Evidence for plasticity in older adults. NeuroImage, 217, 116887. https://doi.org/10.1016/j.neuroimage.2020.116887
dc.identifier.citedreferenceIordan, A. D., & Reuter- Lorenz, P. A. ( 2017 ). Age- related change and the predictive value of the - resting state- : A commentary on Campbell and Schacter (2016). Language, Cognition and Neuroscience, 32 ( 6 ), 674 - 677. https://doi.org/10.1080/23273798.2016.1242759
dc.identifier.citedreferenceKelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. ( 2008 ). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39 ( 1 ), 527 - 537. https://doi.org/10.1016/j.neuroimage.2007.08.008
dc.identifier.citedreferenceKitzbichler, M. G., Henson, R. N., Smith, M. L., Nathan, P. J., & Bullmore, E. T. ( 2011 ). Cognitive effort drives workspace configuration of human brain functional networks. The Journal of Neuroscience, 31 ( 22 ), 8259 - 8270. https://doi.org/10.1523/jneurosci.0440-11.2011
dc.identifier.citedreferenceKlein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., - ¦ Parsey, R. V. ( 2009 ). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46 ( 3 ), 786 - 802. https://doi.org/10.1016/j.neuroimage.2008.12.037
dc.identifier.citedreferenceKorhonen, O., Saarimäki, H., Glerean, E., Sams, M., & Saramäki, J. ( 2017 ). Consistency of regions of interest as nodes of fMRI functional brain networks. Network Neuroscience, 1 ( 3 ), 254 - 274. https://doi.org/10.1162/NETN_a_00013
dc.identifier.citedreferenceKrienen, F. M., Yeo, B. T. T., & Buckner, R. L. ( 2014 ). Reconfigurable task- dependent functional coupling modes cluster around a core functional architecture. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369 ( 1653 ), 20130526. https://doi.org/10.1098/rstb.2013.0526
dc.identifier.citedreferenceLancichinetti, A., & Fortunato, S. ( 2012 ). Consensus clustering in complex networks. Scientific Reports, 2, 336. https://doi.org/10.1038/srep00336
dc.identifier.citedreferenceLatora, V., & Marchiori, M. ( 2003 ). Economic small- world behavior in weighted networks. The European Physical Journal B - Condensed Matter, 32 ( 2 ), 249 - 263. https://doi.org/10.1140/epjb/e2003-00095-5
dc.identifier.citedreferenceLebedev, A. V., Nilsson, J., & Lovden, M. ( 2018 ). Working memory and reasoning benefit from different modes of large- scale brain dynamics in healthy older adults. Journal of Cognitive Neuroscience, 30 ( 7 ), 1033 - 1046. https://doi.org/10.1162/jocn_a_01260
dc.identifier.citedreferenceLi, H. J., Hou, X. H., Liu, H. H., Yue, C. L., Lu, G. M., & Zuo, X. N. ( 2015 ). Putting age- related task activation into large- scale brain networks: A meta- analysis of 114 fMRI studies on healthy aging. Neuroscience and Biobehavioral Reviews, 57, 156 - 174. https://doi.org/10.1016/j.neubiorev.2015.08.013
dc.identifier.citedreferenceLiang, X., Zou, Q., He, Y., & Yang, Y. ( 2016 ). Topologically reorganized connectivity architecture of default- mode, executive- control, and salience networks across working memory task loads. Cerebral Cortex, 26 ( 4 ), 1501 - 1511. https://doi.org/10.1093/cercor/bhu316
dc.identifier.citedreferenceMalagurski, B., Liem, F., Oschwald, J., Mérillat, S., & Jäncke, L. ( 2020 ). Functional dedifferentiation of associative resting state networks in older adults- A longitudinal study. NeuroImage, 214, 116680. https://doi.org/10.1016/j.neuroimage.2020.116680
dc.identifier.citedreferenceMaslov, S., & Sneppen, K. ( 2002 ). Specificity and stability in topology of protein networks. Science, 296 ( 5569 ), 910 - 913. https://doi.org/10.1126/science.1065103
dc.identifier.citedreferenceMeier, T. B., Desphande, A. S., Vergun, S., Nair, V. A., Song, J., Biswal, B. B., - ¦ Prabhakaran, V. ( 2012 ). Support vector machine classification and characterization of age- related reorganization of functional brain networks. NeuroImage, 60 ( 1 ), 601 - 613. https://doi.org/10.1016/j.neuroimage.2011.12.052
dc.identifier.citedreferenceMeilÄ , M. ( 2007 ). Comparing clusterings- An information based distance. Journal of Multivariate Analysis, 98 ( 5 ), 873 - 895. https://doi.org/10.1016/j.jmva.2006.11.013
dc.identifier.citedreferenceMenon, V. ( 2011 ). Large- scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15 ( 10 ), 483 - 506. https://doi.org/10.1016/j.tics.2011.08.003
dc.identifier.citedreferenceMeunier, D., Achard, S., Morcom, A., & Bullmore, E. ( 2009 ). Age- related changes in modular organization of human brain functional networks. NeuroImage, 44 ( 3 ), 715 - 723. https://doi.org/10.1016/j.neuroimage.2008.09.062
dc.identifier.citedreferenceMeunier, D., Stamatakis, E. A., & Tyler, L. K. ( 2014 ). Age- related functional reorganization, structural changes, and preserved cognition. Neurobiology of Aging, 35 ( 1 ), 42 - 54. https://doi.org/10.1016/j.neurobiolaging.2013.07.003
dc.identifier.citedreferenceMurphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. ( 2009 ). The impact of global signal regression on resting state correlations: Are anti- correlated networks introduced? NeuroImage, 44 ( 3 ), 893 - 905. https://doi.org/10.1016/j.neuroimage.2008.09.036
dc.identifier.citedreferenceMuschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., & Mostofsky, S. H. ( 2014 ). Reduction of motion- related artifacts in resting state fMRI using aCompCor. NeuroImage, 96, 22 - 35. https://doi.org/10.1016/j.neuroimage.2014.03.028
dc.identifier.citedreferenceNagel, I. E., Preuschhof, C., Li, S. C., Nyberg, L., Backman, L., Lindenberger, U., & Heekeren, H. R. ( 2009 ). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 106 ( 52 ), 22552 - 22557. https://doi.org/10.1073/pnas.0908238106
dc.identifier.citedreferenceNaik, S., Banerjee, A., Bapi, R. S., Deco, G., & Roy, D. ( 2017 ). Metastability in senescence. Trends in Cognitive Sciences, 21 ( 7 ), 509 - 521. https://doi.org/10.1016/j.tics.2017.04.007
dc.identifier.citedreferenceNewman, M. E. J. ( 2006 ). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103 ( 23 ), 8577 - 8582. https://doi.org/10.1073/pnas.0601602103
dc.identifier.citedreferenceNewman, M. E. J., & Girvan, M. ( 2004 ). Finding and evaluating community structure in networks. Physical Review E, 69 ( 2 ), 026113. https://doi.org/10.1103/physreve.69.026113
dc.identifier.citedreferencePark, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. ( 2004 ). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 35 ), 13091 - 13095. https://doi.org/10.1073/pnas.0405148101
dc.identifier.citedreferencePark, D. C., & Reuter- Lorenz, P. ( 2009 ). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173 - 196. https://doi.org/10.1146/annurev.psych.59.103006.093656
dc.identifier.citedreferencePark, J., Carp, J., Hebrank, A., Park, D. C., & Polk, T. A. ( 2010 ). Neural specificity predicts fluid processing ability in older adults. The Journal of Neuroscience, 30 ( 27 ), 9253 - 9259. https://doi.org/10.1523/jneurosci.0853-10.2010
dc.identifier.citedreferencePower, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., - ¦ Petersen, S. E. ( 2011 ). Functional network organization of the human brain. Neuron, 72 ( 4 ), 665 - 678. https://doi.org/10.1016/j.neuron.2011.09.006
dc.identifier.citedreferencePower, J. D., & Petersen, S. E. ( 2013 ). Control- related systems in the human brain. Current Opinion in Neurobiology, 23 ( 2 ), 223 - 228. https://doi.org/10.1016/j.conb.2012.12.009
dc.identifier.citedreferenceReuter- Lorenz, P. A., & Cappell, K. A. ( 2008 ). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17 ( 3 ), 177 - 182.
dc.identifier.citedreferenceReuter- Lorenz, P. A., & Iordan, A. D. ( 2018 ). From cognitive tasks to cognitive theories and Back again: Fitting data to the real world. Journal of Applied Research in Memory and Cognition, 7 ( 4 ), 510 - 513. https://doi.org/10.1016/j.jarmac.2018.09.007
dc.identifier.citedreferenceRubinov, M., & Sporns, O. ( 2010 ). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52 ( 3 ), 1059 - 1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
dc.identifier.citedreferenceSalami, A., Rieckmann, A., Karalija, N., Avelar- Pereira, B., Andersson, M., WÃ¥hlin, A., - ¦ Nyberg, L. ( 2018 ). Neurocognitive profiles of older adults with working- memory dysfunction. Cerebral Cortex, 28 ( 7 ), 2525 - 2539. https://doi.org/10.1093/cercor/bhy062
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.