Show simple item record

Superthermal Proton and Electron Fluxes in the Plasma Sheet Transition Region and Their Dependence on Solar Wind Parameters

dc.contributor.authorStepanov, N. A.
dc.contributor.authorSergeev, V. A.
dc.contributor.authorSormakov, D. A.
dc.contributor.authorAndreeva, V. A.
dc.contributor.authorDubyagin, S. V.
dc.contributor.authorGanushkina, N.
dc.contributor.authorAngelopoulos, V.
dc.contributor.authorRunov, A. V.
dc.date.accessioned2021-04-06T02:12:38Z
dc.date.available2022-05-05 22:12:36en
dc.date.available2021-04-06T02:12:38Z
dc.date.issued2021-04
dc.identifier.citationStepanov, N. A.; Sergeev, V. A.; Sormakov, D. A.; Andreeva, V. A.; Dubyagin, S. V.; Ganushkina, N.; Angelopoulos, V.; Runov, A. V. (2021). "Superthermal Proton and Electron Fluxes in the Plasma Sheet Transition Region and Their Dependence on Solar Wind Parameters." Journal of Geophysical Research: Space Physics 126(4): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/167082
dc.description.abstractTo study further the factors and mechanisms controlling 10–150 keV particle fluxes in the inner magnetosphere, we investigate empirically their behavior in the nightside transition region (6–14 Re) depending on solar wind parameters taken at different time lags. We aim to establish the hierarchy of predictors (V, N, Pd, Ekl = VByz sin2(θ/2), etc.) and the optimal range of their time delays, both depending on the distance and local time. We use THEMIS 5‐min averaged observations of energetic proton and electron fluxes in 2007–2018 near the plasma sheet midplane and build regression models exploring the combination of predictors, taken at time delays up to 24 h. The model obtained shows that protons and electrons are controlled differently by solar wind parameters: electrons are influenced equally by Vsw and Ekl, whereas protons are controlled mostly by Vsw and Pd and less by Ekl. We found that a wide range of time delays is involved depending on distance and particle energy. Specifically, the Ekl affects the energetic fluxes with time delays up to 24 h (or more), exhibiting the long delays in the innermost regions. As regards the mechanism of Vsw influence, the Vsw‐related flux changes are large and, to a large extent, established on the route of the energy flow from solar wind to the plasma sheet and, eventually, the inner magnetosphere. We also identified a new parameter, NBL = VByz cos2(θ/2), which helps to reveal the loss processes in the plasma sheet transition region.Key PointsMost important predictors of particle flux are Vsw and Ekl for electrons and Vsw and Pd (with smaller impact of Ekl) for protonsEkl time lags depend on energy and distance, with up to 24 h lag (maximum value for present study) in the region closest to EarthSolar wind velocity controls the energetic population in the tail plasma sheet
dc.publisherSpringer Science + Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplasma sheet
dc.subject.otherenergetic particles
dc.subject.othermagnetotail
dc.subject.othersolar wind dependence
dc.titleSuperthermal Proton and Electron Fluxes in the Plasma Sheet Transition Region and Their Dependence on Solar Wind Parameters
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167082/1/jgra56326_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/167082/2/jgra56326.pdf
dc.identifier.doi10.1029/2020JA028580
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSeabold, S., & Perktold, J. ( 2010 ). Statsmodels: Econometric and statistical modeling with python. Paper presented at Proceedings of the 9th Python in Science Conference. https://doi.org/10.25080/Majora-92bf1922-011
dc.identifier.citedreferenceKronberg, E. A., Grigorenko, E. E., Haaland, S. E., Daly, P. W., Delcourt, D. C., Luo, H., et al. ( 2015 ). Distribution of energetic oxygen and hydrogen in the near‐Earth plasma sheet. Journal of Geophysical Research: Space Physics, 120, 3415 – 3431. https://doi.org/10.1002/2014JA020882
dc.identifier.citedreferenceLi, W., Raeder, J., Thomsen, M. F., & Lavraud, B. ( 2008 ). Solar wind plasma entry into the magnetosphere under northward IMF conditions. Journal of Geophysical Research, 113, A04204. https://doi.org/10.1029/2007JA012604
dc.identifier.citedreferenceLuo, B., Tu, W., Li, X., Gong, J., Liu, S., Burin Des Roziers, E., & Baker, D. N. ( 2011 ). On energetic electrons (>38 keV) in the central plasma sheet: Data analysis and modeling. Journal of Geophysical Research, 116, A09220. https://doi.org/10.1029/2011JA016562
dc.identifier.citedreferenceLuo, H., Kronberg, E. A., Grigorenko, E. E., Fränz, M., Daly, P. W., Chen, G. X., et al. ( 2014 ). Evidence of strong energetic ion acceleration in the near‐Earth magnetotail. Geophysical Research Letters, 41, 3724 – 3730. https://doi.org/10.1002/2014GL060252
dc.identifier.citedreferenceLuo, H., Kronberg, E. A., Nykyri, K., Trattner, K. J., Daly, P. W., Chen, G. X., et al. ( 2017 ). IMF dependence of energetic oxygen and hydrogen ion distributions in the near‐Earth magnetosphere. Journal of Geophysical Research: Space Physics, 122, 5168 – 5180. https://doi.org/10.1002/2016JA023471
dc.identifier.citedreferenceLvova, E. A., Sergeev, V. A., & Bagautdinova, G. R. ( 2005 ). Statistical study of the proton isotropy boundary. Annales Geophysicae, 23, 1311 – 1316. https://doi.org/10.5194/angeo-23-1311-2005
dc.identifier.citedreferenceMaggiolo, R., Hamrin, M., De Keyser, J., Pitkänen, T., Cessateur, G., Gunell, H., & Maes, L. ( 2017 ). The delayed time response of geomagnetic activity to the solar wind. Journal of Geophysical Research: Space Physics, 122, 11109 – 11127. https://doi.org/10.1002/2016JA023793
dc.identifier.citedreferenceMiyashita, Y., Seki, K., Sakaguchi, K., Hiraki, Y., Nosé, M., Machida, S., et al. ( 2020 ). On the transition between the inner and outer plasma sheet in the Earth’s magnetotail. Journal of Geophysical Research: Space Physics, 125, e2019JA027561. https://doi.org/10.1029/2019JA027561
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Liou, K., Meng, C.‐I., & Rich, F. J. ( 2007 ). A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112, A01206. https://doi.org/10.1029/2006JA012015
dc.identifier.citedreferenceBorovsky, J. E., Thomsen, M. F., & Elphic, R. C. ( 1998 ). The driving of the plasma sheet by the solar wind. Journal of Geophysical Research, 103 ( A8 ), 17617 – 17639. https://doi.org/10.1029/97JA02986
dc.identifier.citedreferenceSergeev, V. A., Dmitrieva, N. P., Stepanov, N. A., Sormakov, D. A., Angelopoulos, V., & Runov, A. V. ( 2015 ). On the plasma sheet dependence on solar wind and substorms and its role in magnetosphere–ionosphere coupling. Earth Planets and Space, 67, 133. https://doi.org/10.1186/s40623-015-0296-x
dc.identifier.citedreferenceSergeev, V., Stepanov, N., Ogawa, Y., Kaki, S., & Kauristie, K. ( 2017 ). Solar wind dependence of electric conductances and currents in the auroral zone. Journal of Atmospheric and Solar‐Terrestrial Physics, 177, 38 – 45. https://doi.org/10.1016/j.jastp.2017.07.006
dc.identifier.citedreferenceSillanpää, I., Ganushkina, N. Y., Dubyagin, S., & Rodriguez, J. V. ( 2017 ). Electron fluxes at geostationary orbit from GOES MAGED data. Space Weather, 15, 1602 – 1614. https://doi.org/10.1002/2017SW001698
dc.identifier.citedreferenceSimms, L., Engebretson, M., Clilverd, M., Rodger, C., Lessard, M., Gjerloev, J., & Reeves, G. ( 2018 ). A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs. Journal of Geophysical Research: Space Physics, 123, 3646 – 3671. https://doi.org/10.1029/2017JA025002
dc.identifier.citedreferenceStepanova, M., & Antonova, E. E. ( 2015 ). Role of turbulent transport in the evolution of the κ distribution functions in the plasma sheet. Journal of Geophysical Research: Space Physics, 120, 3702 – 3714. https://doi.org/10.1002/2014JA020684
dc.identifier.citedreferenceTerasawa, T., Fujimoto, M., Mukai, T., Shinohara, I., Saito, Y., Yamamoto, T., et al. ( 1997 ). Solar wind control of density and temperature in the near‐Earth plasma sheet: WIND/GEOTAIL collaboration. Geophysical Research Letters, 24 ( 8 ), 935 – 938. https://doi.org/10.1029/96GL04018
dc.identifier.citedreferenceThorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. ( 2013 ). Rapid local acceleration of relativistic radiation‐belt electrons by magnetospheric chorus. Nature, 504 ( 7480 ), 411 – 414. https://doi.org/10.1038/nature12889
dc.identifier.citedreferenceTroshichev, O., Janzhura, A., & Stauning, P. ( 2006 ). Unified PCN and PCS indices: Method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. Journal of Geophysical Research, 111, A05208. https://doi.org/10.1029/2005JA011402
dc.identifier.citedreferenceTsyganenko, N. A., & Andreeva, V. A. ( 2015 ). A forecasting model of the magnetosphere driven by an optimal solar wind coupling function. Journal of Geophysical Research: Space Physics, 120, 8401 – 8425. https://doi.org/10.1002/2015JA021641
dc.identifier.citedreferenceTsyganenko, N. A., Andreeva, V. A., & Gordeev, E. I. ( 2015 ). Internally and externally induced deformations of the magnetospheric equatorial current as inferred from spacecraft data. Annales Geophysicae, 33, 1 – 11. https://doi.org/10.5194/angeo-33-1-2015
dc.identifier.citedreferenceTsyganenko, N. A., & Mukai, T. ( 2003 ). Tail plasma sheet models derived from Geotail particle data. Journal of Geophysical Research, 108 ( A3 ), 1136. https://doi.org/10.1029/2002JA009707
dc.identifier.citedreferenceTurner, D. L., Angelopoulos, V., Shprits, Y., Kellerman, A., Cruce, P., & Larson, D. ( 2012 ). Radial distributions of equatorial phase space density for outer radiation belt electrons. Geophysical Research Letters, 39, L09101. https://doi.org/10.1029/2012GL051722
dc.identifier.citedreferenceWalsh, B. M., Hull, A. J., Agapitov, O., Mozer, F. S., & Li, H. ( 2020 ). A census of magnetospheric electrons from several eV to 30 keV. Journal of Geophysical Research: Space Physics, 125, e2019JA027577. https://doi.org/10.1029/2019JA027577
dc.identifier.citedreferenceWang, C.‐P., Gkioulidou, M., Lyons, L. R., & Angelopoulos, V. ( 2012 ). Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. Journal of Geophysical Research, 117, A08215. https://doi.org/10.1029/2012JA017658
dc.identifier.citedreferenceWang, C.‐P., Kim, H.‐J., Yue, C., Weygand, J. M., Hsu, T.‐S., & Chu, X. ( 2017 ). Effects of solar wind ultralow‐frequency fluctuations on plasma sheet electron temperature: Regression analysis with support vector machine. Journal of Geophysical Research: Space Physics, 122, 4210 – 4227. https://doi.org/10.1002/2016JA023746
dc.identifier.citedreferenceXu, F., & Borovsky, J. E. ( 2015 ). A new four‐plasma categorization scheme for the solar wind. Journal of Geophysical Research: Space Physics, 120, 70 – 100. https://doi.org/10.1002/2014JA020412
dc.identifier.citedreferenceYue, C., Wang, C.‐P., Lyons, L., Liang, J., Donovan, E. F., Zaharia, S. G., & Henderson, M. ( 2014 ). Current sheet scattering and ion isotropic boundary under 3‐D empirical force‐balanced magnetic field. Journal of Geophysical Research: Space Physics, 119, 8202 – 8211. https://doi.org/10.1002/2014JA020172
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ). The THEMIS mission. Space Science Reviews, 141, 5 – 34. https://doi.org/10.1007/s11214-008-9336-1
dc.identifier.citedreferenceBargatze, L. F., Baker, D. N., McPherron, R. L., & Hones, E. W., Jr. ( 1985 ). Magnetospheric impulse response for many levels of geomagnetic activity. Journal of Geophysical Research, 90 ( A7 ), 6387 – 6394. https://doi.org/10.1029/JA090iA07p06387
dc.identifier.citedreferenceBaumjohann, W., Paschmann, G., & Cattell, C. A. ( 1989 ). Average plasma properties in the central plasma sheet. Journal of Geophysical Research, 94 ( A6 ), 6597 – 6606. https://doi.org/10.1029/JA094iA06p06597
dc.identifier.citedreferenceBoyd, A. J., Spence, H. E., Huang, C.‐L., Reeves, G. D., Baker, D. N., Turner, D. L., & Shprits, Y. Y. ( 2016 ). Statistical properties of the radiation belt seed population. Journal of Geophysical Research: Space Physics, 121, 7636 – 7646. https://doi.org/10.1002/2016JA022652
dc.identifier.citedreferenceBoyle, C. B., Reiff, P. H., & Hairston, M. R. ( 1997 ). Empirical polar cap potentials. Journal of Geophysical Research, 102 ( A1 ), 111 – 125. https://doi.org/10.1029/96JA01742
dc.identifier.citedreferenceBoynton, R. J., Aryan, H., Walker, S. N., Krasnoselskikh, V., & Balikhin, M. A. ( 2018 ). The influence of solar wind and geomagnetic indices on lower band chorus emissions in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 123, 9022 – 9034. https://doi.org/10.1029/2018JA025704
dc.identifier.citedreferenceBoynton, R. J., Balikhin, M. A., Billings, S. A., Reeves, G. D., Ganushkina, N., Gedalin, M., et al. ( 2013 ). The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 118, 1500 – 1513. https://doi.org/10.1002/jgra.50192
dc.identifier.citedreferenceBoynton, R. J., Balikhin, M. A., Sibeck, D. G., Walker, S. N., Billings, S. A., & Ganushkina, N. ( 2016 ). Electron flux models for different energies at geostationary orbit. Space Weather, 14, 846 – 860. https://doi.org/10.1002/2016SW001506
dc.identifier.citedreferenceDenton, M. H., Henderson, M. G., Jordanova, V. K., Thomsen, M. F., Borovsky, J. E., Woodroffe, J., et al. ( 2016 ). An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 14, 511 – 523. https://doi.org/10.1002/2016SW001409
dc.identifier.citedreferenceDenton, M. H., Taylor, M. G. G. T., Rodriguez, J. V., & Henderson, M. G. ( 2019 ). Extension of an empirical electron flux model from 6 to 20 Earth radii using Cluster/RAPID observations. Space Weather, 17, 778 – 792. https://doi.org/10.1029/2018SW002121
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N., & Liemohn, M. ( 2019 ). On the accuracy of reconstructing plasma sheet electron fluxes from temperature and density models. Space Weather, 17, 1704 – 1719. https://doi.org/10.1029/2019SW002285
dc.identifier.citedreferenceDubyagin, S., Ganushkina, N. Y., Sillanpää, I., & Runov, A. ( 2016 ). Solar wind‐driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times. Journal of Geophysical Research: Space Physics, 121, 8343 – 8360. https://doi.org/10.1002/2016JA022947
dc.identifier.citedreferenceEspinoza, C. M., Stepanova, M., Moya, P. S., Antonova, E. E., & Valdivia, J. A. ( 2018 ). Ion and electron κ distribution functions along the plasma sheet. Geophysical Research Letters, 45, 6362 – 6370. https://doi.org/10.1029/2018GL078631
dc.identifier.citedreferenceForsyth, C., Rae, I. J., Murphy, K. R., Freeman, M. P., Huang, C. L., Spence, H. E., et al. ( 2016 ). What effect do substorms have on the content of the radiation belts? Journal of Geophysical Research: Space Physics, 121, 6292 – 6306. https://doi.org/10.1002/2016JA022620
dc.identifier.citedreferenceGabrielse, C., Angelopoulos, V., Runov, A., & Turner, D. L. ( 2014 ). Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 119, 2512 – 2535. https://doi.org/10.1002/2013JA019638
dc.identifier.citedreferenceGao, X., Li, W., Thorne, R., Bortnik, J., Angelopoulos, V., Lu, Q., et al. ( 2014 ). New evidence for generation mechanisms of discrete and hiss‐like whistler mode waves. Geophysical Research Letters, 41, 4805 – 4811. https://doi.org/10.1002/2014GL060707
dc.identifier.citedreferenceGrigorenko, E. E., Malova, H. V., Artemyev, A. V., Mingalev, O. V., Kronberg, E. A., Koleva, R., et al. ( 2013 ). Current sheet structure and kinetic properties of plasma flows during a near‐Earth magnetic reconnection under the presence of a guide field. Journal of Geophysical Research: Space Physics, 118, 3265 – 3287. https://doi.org/10.1002/jgra.50310
dc.identifier.citedreferenceHori, T., Maezawa, K., Saito, Y., & Mukai, T. ( 2000 ). Average profile of ion flow and convection electric field in the near‐Earth plasma sheet. Geophysical Research Letters, 27, 1623 – 1626. https://doi.org/10.1029/1999GL003737
dc.identifier.citedreferenceJames, G., Witten, D., Hastie, T., & Tibshirani, R. ( 2017 ). An introduction to statistical learning ( 8th ed. ). New York: Springer Science + Business Media.
dc.identifier.citedreferenceKan, J. R., & Lee, L. C. ( 1979 ). Energy coupling function and solar wind‐magnetosphere dynamo. Geophysical Research Letters, 6 ( 7 ), 577 – 580. https://doi.org/10.1029/GL006i007p00577
dc.identifier.citedreferenceKellerman, A. C., Shprits, Y. Y., Makarevich, R. A., Spanswick, E., Donovan, E., & Reeves, G. ( 2015 ). Characterization of the energy‐dependent response of riometer absorption. Journal of Geophysical Research: Space Physics, 120, 615 – 631. https://doi.org/10.1002/2014JA020027
dc.identifier.citedreferenceKellerman, A. C., Shprits, Y. Y., & Turner, D. L. ( 2013 ). A Geosynchronous Radiation‒belt Electron Empirical Prediction (GREEP) model. Space Weather, 11, 463 – 475. https://doi.org/10.1002/swe.20074
dc.identifier.citedreferenceKistler, L. M., & Mouikis, C. G. ( 2016 ). The inner magnetosphere ion composition and local time distribution over a solar cycle. Journal of Geophysical Research: Space Physics, 121, 2009 – 2032. https://doi.org/10.1002/2015JA021883
dc.identifier.citedreferenceKnight, S. ( 1973 ). Parallel electric fields. Planetary and Space Science, 21, 741 – 750.
dc.identifier.citedreferenceKorth, H., Thomsen, M. F., Borovsky, J. E., & McComas, D. J. ( 1999 ). Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104 ( A11 ), 25047 – 25061. https://doi.org/10.1029/1999JA900292
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.