Show simple item record

Relating leaf traits to seedling performance in a tropical forest: building a hierarchical functional framework

dc.contributor.authorUmaña, María Natalia
dc.contributor.authorSwenson, Nathan G.
dc.contributor.authorMarchand, Philippe
dc.contributor.authorCao, Min
dc.contributor.authorLin, Luxiang
dc.contributor.authorZhang, Caicai
dc.date.accessioned2021-07-01T20:12:59Z
dc.date.available2022-08-01 16:12:57en
dc.date.available2021-07-01T20:12:59Z
dc.date.issued2021-07
dc.identifier.citationUmaña, María Natalia ; Swenson, Nathan G.; Marchand, Philippe; Cao, Min; Lin, Luxiang; Zhang, Caicai (2021). "Relating leaf traits to seedling performance in a tropical forest: building a hierarchical functional framework." Ecology (7): n/a-n/a.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/168336
dc.description.abstractTrait‐based approaches have been extensively used in community ecology to provide a mechanistic understanding of the drivers of community assembly. However, a foundational assumption of the trait framework, traits relate to performance, has been mainly examined through univariate relationships that simplify the complex phenotypic integration of organisms. We evaluate a conceptual framework in which traits are organized hierarchically combining trait information at the individual‐ and species‐level from biomass allocation and organ‐level traits. We focus on photosynthetic traits and predict that the positive effects of increasing plant leaf mass on growth depend on species‐level leaf traits. We modeled growth data on more than 1,500 seedlings from 97 seedling species from a tropical forest in China. We found that seedling growth increases with allocation to leaves (high leaf area ratio and leaf mass fraction) and this effect is accentuated for species with high specific leaf area and leaf area. Also, we found that light has a significant effect on growth, and this effect is additive with leaf allocation traits. Our work offers an approach to gain further understanding of the effects of traits on the whole plant‐level growth via a hierarchical framework including organ‐level and biomass allocation traits at species and individual levels.
dc.publisherWiley Periodicals, Inc.
dc.publisherYunnan Science and Technology Press
dc.subject.otherrelative growth rates
dc.subject.otherspecific leaf area
dc.subject.otherseedlings
dc.subject.otherbiomass allocation traits
dc.subject.othercanopy openness
dc.subject.otherChina
dc.subject.otherleaf area
dc.subject.otherleaf thickness
dc.titleRelating leaf traits to seedling performance in a tropical forest: building a hierarchical functional framework
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168336/1/ecy3385_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168336/2/ecy3385-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168336/3/ecy3385.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168336/4/ecy3385-sup-0002-AppendixS2.pdf
dc.identifier.doi10.1002/ecy.3385
dc.identifier.sourceEcology
dc.identifier.citedreferenceR Development Core Team. 2017. R: A language and environment for statistical computing R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria. www.R‐project.org
dc.identifier.citedreferencePoorter, H. 1989. Plant growth analysis: towards a synthesis of the classical and the functional approach. Physiologia Plantarum 75: 237 – 244.
dc.identifier.citedreferencePoorter, H. 1990. Interspecific variation in relative growth rate: on ecological causes and physiological consequences. Pages 45 – 68 in H. Lambers, M. L. Cambridge, H. Konings, and T. L. Pons, editors. Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishing, The Hague, The Netherlands.
dc.identifier.citedreferencePoorter, H., and O. Nagel. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27: 595 – 607.
dc.identifier.citedreferencePoorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist 193: 30 – 50.
dc.identifier.citedreferencePoorter, H., S. Pepin, T. Rijkers, Y. De Jong, J. R. Evans, and C. Körner. 2006. Construction costs, chemical composition and payback time of high‐ and low‐irradiance leaves. Journal of Experimental Botany 57: 355 – 371.
dc.identifier.citedreferencePoorter, H., and C. Remkes. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553 – 559.
dc.identifier.citedreferencePoorter, H., and A. van der Werf. 1998. Is inherent variation in RGR determined by LAR at low light and by NAR at high light? Pages 309 – 336 in H. Lambers, H Poorter, and M. M. I. Vn Vuuren, editors. Inherent variation in plant growth: physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, The Netherlands.
dc.identifier.citedreferencePoorter, L., et al. 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89: 1908 – 1920.
dc.identifier.citedreferenceReich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, C. Volin, and W. D. Bowman. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80: 1955 – 1969.
dc.identifier.citedreferenceSchlichting, C. D. 1989. Phenotypic integration and environmental change. BioScience 39: 460 – 464.
dc.identifier.citedreferencestan Development Team. 2020. RStan: the R interface to Stan. R package version 2(21):2. http://mc‐stan.org/
dc.identifier.citedreferenceSterck, F. J., and F. Bongers. 2001. Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecology 153: 279 – 292.
dc.identifier.citedreferenceSterck, F., L. Markesteijn, F. Schieving, and L. Poorter. 2011. Functional traits determine trade‐offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences USA 108: 20627 – 20632.
dc.identifier.citedreferenceSterck, F. J., L. Poorter, and F. Schieving. 2006. Leaf traits determine the growth‐survival trade‐off across rain forest tree species. American Naturalist 167: 758 – 765.
dc.identifier.citedreferenceUmaña, M. N., G. Arellano, N. G. Swenson, and J. Zambrano. 2020a. Tree seedling trait optimization and growth in response to local‐scale soil and light variability. Ecology 102: e03252.
dc.identifier.citedreferenceUmaña, M. N., M. Cao, L. Lin, N. G. Swenson, and C. Zhang. 2020b. Trade‐offs in above‐ and below‐ground biomass allocation influencing seedling growth in a tropical forest. Journal of Ecology 109: 1184 – 1193.
dc.identifier.citedreferenceUmaña, M. N., M. Cao, L. Lin, N. Swenson, and C. Zhang. 2020c. Trade‐offs in above and belowground biomass allocation influencing seedling growth in a tropical forest. Dryad, data set. https://doi.org/10.5061/dryad.bk3j9kd93
dc.identifier.citedreferenceUmaña, M. N., C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2015. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters 18: 1329 – 1337.
dc.identifier.citedreferenceUmaña, M. N., C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2018. Quantifying the role of intra‐specific trait variation for allocation and organ‐level traits in tropical seedling communities. Journal of Vegetation Science 29: 276 – 284.
dc.identifier.citedreferenceUmaña, M. N., E. F. Zipkin, C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2019. Data from: Individual‐level trait variation and negative density dependence affects growth in tropical tree seedlings. Dryad, data set. https://doi.org/10.5061/dryad.6d1qm1j
dc.identifier.citedreferenceVehtari, A., A. Gelman, and J. Gabry. 2017a. loo package: Efficient leave‐one‐out cross‐validation and WAIC for Bayesian models. Statistics and Computing 27: 1413 – 1432.
dc.identifier.citedreferenceVehtari, A., A. Gelman, and J. Gabry. 2017b. Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC. Statistics and Computing 27: 1413 – 1432.
dc.identifier.citedreferenceViolle, C., M.‐L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882 – 892.
dc.identifier.citedreferenceWildová, R., L. Gough, C. Hershock, and D. E. Goldberg. 2007. Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a field‐parameterized simulation model. Oikos 116: 836 – 852.
dc.identifier.citedreferenceWorthy, S. J., D. C. Laughlin, J. Zambrano, M. N. Umaña, C. Zhang, L. Lin, M. Cao, and N. G. Swenson. 2020. Alternative designs and tropical tree seedling growth performance landscapes. Ecology 101: e03007.
dc.identifier.citedreferenceWright, I. J., et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821 – 827.
dc.identifier.citedreferenceWright, S. J., et al. 2010. Functional traits and the growth‐mortality trade‐off in tropical trees. Ecology 91: 3664 – 3674.
dc.identifier.citedreferenceYang, J., M. Cao, and N. G. Swenson. 2018. Why functional traits do not predict tree demographic rates. Trends in Ecology and Evolution 33: 326 – 336.
dc.identifier.citedreferenceYang, J., X. Song, M. Cao, X. Deng, W. Zhang, X. Yang, and N. G. Swenson. 2020. On the modeling of tropical tree growth: the importance of intraspecific trait variation, non‐linear functions and phenotypic integration. Annals of Botany 127: 533 – 542.
dc.identifier.citedreferenceGrime, J. P. 1979. Plant strategies and vegetation processes. John Wiley and Sons, Chichester, UK.
dc.identifier.citedreferenceHirose, T., and M. J. A. Werger. 1995. Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology 76: 466 – 474.
dc.identifier.citedreferencePoorter, L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist 3: 890 – 900.
dc.identifier.citedreferencePoorter, L., and D. M. A. Rozendaal. 2008. Leaf size and leaf display of thirty‐eight tropical tree species. Oecologia 158: 35 – 46.
dc.identifier.citedreferencePopma, J., and F. Bongers. 1988. The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 75: 625 – 632.
dc.identifier.citedreferenceAdler, P. B., et al. 2014. Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences USA 111: 10019.
dc.identifier.citedreferenceArmbruster, W. S. 1991. Multilevel analysis of morphometric data from natural plant populations: insights into ontoogenetic, genetic and selective correlations in Dalechampia scandens. Evolution 45: 1229 – 1244.
dc.identifier.citedreferenceArmbruster, W. S., C. Pelabon, G. H. Bolstad, and T. F. Hansen. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philosophical Transactions of the Royal Society B 369: 20130245.
dc.identifier.citedreferenceArmbruster, W. S., and K. E. Schwaegerle. 1996. Causes of covariation of phenotypic traits among populations. Journal of Evolutionary Biology 9: 261 – 276.
dc.identifier.citedreferenceArnold, S. J. 1983. Morphology, performance and fitness. American Zoology 361: 347 – 361.
dc.identifier.citedreferenceAugspurger, C. K. 1984. Light requirements of neotropical tree seedlings: a comparative study of growth and survival. Journal of Ecology 72: 777 – 795.
dc.identifier.citedreferenceBerg, R. L. 1960. The ecological significance of correlation pleiades. Evolution 14: 171 – 180.
dc.identifier.citedreferenceBlonder, B., R. E. Kapas, R. M. Dalton, B. J. Graae, J. M. Heiling, and Ø. H. Opedal. 2018. Microenvironment and functional‐trait context dependence predict alpine plant community dynamics. Journal of Ecology 106: 1323 – 1337.
dc.identifier.citedreferenceBonser, S. P. 2006. Form defining function: interpreting leaf functional variability in integrated plant phenotypes. Oikos 114: 187 – 190.
dc.identifier.citedreferenceCao, M., H. Zhu, H. Wang, G. Lan, Y. Hu, S. Zhou, X. Deng, and J. Cui. 2008. Xishuangbanna tropical seasonal rainforest dynamics plot: tree distribution maps, diameter tables and species docunetation. Yunnan Science and Technology Press, Kunming, Yunnan, China.
dc.identifier.citedreferenceChabot, B. F., T. W. Jurik, and J. F. Chabot. 1979. Influence of instantaneous and integrated light‐flux density on leaf anatomy and photosynthesis. American Journal of Botany 66: 940 – 945.
dc.identifier.citedreferenceChazdon, R. L., and N. Fetcher. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. Journal of Ecology 72: 553 – 564.
dc.identifier.citedreferenceCheverud, J. M., and Cheverud. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36: 499 – 516.
dc.identifier.citedreferenceComita, L. S., and S. P. Hubbell. 2009. Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology 90: 328 – 334.
dc.identifier.citedreferenceDenslow, J. S. 1987. Tropical rainforest gaps and tree species diversity. Annual Review of Ecology and Systematics 18: 431 – 451.
dc.identifier.citedreferenceDíaz, S., et al. 2016. The global spectrum of plant form and function. Nature 529: 1 – 17.
dc.identifier.citedreferenceEvans, C. G. 1972. The quantitative analysis of plant growth. University of California Press, Berkeley, California, USA.
dc.identifier.citedreferenceFrazer, G. W., C. D. Canham, and K. P. Lertzman. 2000. Gap Light Analyzer (GLA), version 2.0. Page Technological tools. http://rem‐main.rem.sfu.ca/downloads/Forestry/GLAV2UsersManual.pdf
dc.identifier.citedreferenceFreschet, G. T., E. M. Swart, and J. H. C. Cornelissen. 2015. Integrated plant phenotypic responses to contrasting above‐ and below‐ground resources: key roles of specific leaf area and root mass fraction. New Phytologist 206: 1247 – 1260.
dc.identifier.citedreferenceGarnier, E. 1991. Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology and Evolution 6: 126 – 131.
dc.identifier.citedreferenceLambers, H., and H. Poorter. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187 – 261.
dc.identifier.citedreferenceLaughlin, D. C., and J. Messier. 2015. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology and Evolution 30: 487 – 496.
dc.identifier.citedreferenceLaughlin, D. C., R. T. Strahan, P. B. Adler, and M. M. Moore. 2018. Survival rates indicate that correlations between community‐weighted mean traits and environments can be unreliable estimates of the adaptive value of traits. Ecology Letters 21: 411 – 421.
dc.identifier.citedreferenceMarks, C. O. 2007. The causes of variation in tree seedling traits: the roles of environmental selection versus chance. Evolution 61: 455 – 469.
dc.identifier.citedreferenceMarks, C. O., and M. J. Lechowicz. 2006. A holistic tree seedling model for the investigation of functional trait diversity. Ecological Modelling 193: 141 – 181.
dc.identifier.citedreferenceMcDonald, P. G., C. R. Fonseca, J. M. C. Overton, and M. Westoby. 2003. Leaf‐size divergence along rainfall and soil‐nutrient gradients: Is the method of size reduction common among clades? Functional Ecology 17: 50 – 57.
dc.identifier.citedreferenceMcGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178 – 185.
dc.identifier.citedreferenceMessier, J., M. J. Lechowicz, B. J. Mcgill, C. Violle, B. J. Enquist, and P. Val. 2017a. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology 105: 1775 – 1790.
dc.identifier.citedreferenceMessier, J., B. J. Mcgill, B. J. Enquist, and M. J. Lechowicz. 2017b. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40: 685 – 697.
dc.identifier.citedreferenceMessier, J., B. J. McGill, and M. J. Lechowicz. 2010. How do traits vary across ecological scales? A case for trait‐based ecology. Ecology Letters 13: 838 – 848.
dc.identifier.citedreferenceNiinemets, Ü., A. Portsmuth, and L. Truus. 2002. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species. Annals of Botany 89: 191 – 204.
dc.identifier.citedreferenceNiklas, K. J. 1992. Petiole mechanics, light Interception by lamina and “economy in design.” Oecologia 90: 518 – 526.
dc.identifier.citedreferenceNiklas, K. J. 1999. A mechanical perspective on foliage leaf form and function. New Phytologist 143: 19 – 31.
dc.identifier.citedreferenceNiklas, K. J., and B. J. Enquist. 2001. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences USA 98: 2922 – 2927.
dc.identifier.citedreferenceOlson, E. C., and R. L. Miller. 1958. Morphological integration. The University of Chicago Press, Chicago, Illinois, USA.
dc.identifier.citedreferenceOnoda, Y., et al. 2011. Global patterns of leaf mechanical properties. Ecology Letters 14: 301 – 312.
dc.identifier.citedreferencePaine, C. E. T., et al. 2015. Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why. Journal of Ecology 103: 978 – 989.
dc.identifier.citedreferencePistón, N., F. de Bello, A. T. C. Dias, L. Götzenberger, B. H. P. Rosado, E. A. de Mattos, R. Salguero‐Gómez, and C. P. Carmona. 2019. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. Journal of Ecology 107: 2317 – 2328.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.