Show simple item record

Tuning the Photophysical and Electrochemical Properties of Aza‐Boron‐Dipyridylmethenes for Fluorescent Blue OLEDs

dc.contributor.authorTadle, Abegail C.
dc.contributor.authorEl Roz, Karim A.
dc.contributor.authorSoh, Chan Ho
dc.contributor.authorSylvinson Muthiah Ravinson, Daniel
dc.contributor.authorDjurovich, Peter I.
dc.contributor.authorForrest, Stephen R.
dc.contributor.authorThompson, Mark E.
dc.date.accessioned2021-08-03T18:16:14Z
dc.date.available2022-08-03 14:16:12en
dc.date.available2021-08-03T18:16:14Z
dc.date.issued2021-07
dc.identifier.citationTadle, Abegail C.; El Roz, Karim A.; Soh, Chan Ho; Sylvinson Muthiah Ravinson, Daniel; Djurovich, Peter I.; Forrest, Stephen R.; Thompson, Mark E. (2021). "Tuning the Photophysical and Electrochemical Properties of Aza‐Boron‐Dipyridylmethenes for Fluorescent Blue OLEDs." Advanced Functional Materials 31(27): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/168493
dc.description.abstractA series of substituted aza‐boron‐dipyridylmethene (aD) compounds are demonstrated as fluorescent dopant emitters in blue organic light emitting diodes (OLEDs). Replacing the meso‐carbon of a dipyridylmethene dye with nitrogen to form the aD chromophore leads to a destabilization of the highest occupied molecular orbital in aD, as evidenced both from their experimentally determined photophysical and electrochemical properties. These properties are consistent with theoretical calculations of the molecular energetics. These aD derivatives emit violet to blue light, peaking between 400 and 460 nm with photoluminescent quantum yields over 85%. The aD compounds have small energy differences (<400 meV) between their singlet and triplet excited states. OLEDs fabricated with an aza‐boron‐dipyridylmethene emitting fluorophore give an external quantum efficiency of 4.5% on glass substrates, close to the theoretical maximum for fluorescent OLEDs.A class of blue fluorescent boron‐aza‐dipyridylmethene with small excited state energy gaps (ΔEST < 400 meV) and high photoluminescence efficiencies (ΦPL > 0.8) leads to blue monochromatic devices with external quantum efficiencies close to the theoretical maximum. The synthetic and optical tunability along with the thermal and chemical stability of these materials make them viable options for organic optoelectronics.
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.otherthin film doping
dc.subject.otherorganic electronics
dc.subject.otherorganic light‐emitting diodes
dc.subject.otherphotoluminescence
dc.subject.otheroptically active materials
dc.titleTuning the Photophysical and Electrochemical Properties of Aza‐Boron‐Dipyridylmethenes for Fluorescent Blue OLEDs
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168493/1/adfm202101175.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168493/2/adfm202101175_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/168493/3/adfm202101175-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adfm.202101175
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceS. Schols, A. Kadashchuk, P. Heremans, A. Helfer, U. Scherf, Chemphyschem 2009, 10, 1071.
dc.identifier.citedreferencea) H. Yersin, in Transition Metal and Rare Earth Compounds: Excited States, Transitions, Interactions III, Springer, Berlin 2004, pp. 1 ‐ 26; b)  M. Pfeiffer, S. R. Forrest, K. Leo, M. E. Thompson, Adv. Mater. 2002, 14, 1633.
dc.identifier.citedreferencea) C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, Appl. Phys. Lett. 2001, 78, 1622; b) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151; c) J. Brooks, Y. Babayan, S. Lamansky, P. I. Djurovich, I. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2002, 41, 3055; d) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel‐Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40, 1704; e) S. Lamansky, R. C. Kwong, M. Nugent, P. I. Djurovich, M. E. Thompson, Org. Electron. 2001, 2, 53.
dc.identifier.citedreferencea) W. Shih‐Wen, L. Meng‐Ting, C. H. Chen, J. Disp. Technol. 2005, 1, 90; b) J. Lee, C. Jeong, T. Batagoda, C. Coburn, M. E. Thompson, S. R. Forrest, Nat. Commun. 2017, 8, 15566; c)  C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 2082; d) J. Zhuang, W. Li, W. Su, Y. Liu, Q. Shen, L. Liao, M. Zhou, Org. Electron. 2013, 14, 2596; e) K. P. Klubek, S.‐C. Dong, L.‐S. Liao, C. W. Tang, L. J. Rothberg, Org. Electron. 2014, 15, 3127; f) Y. J. Kang, J. Y. Lee, Org. Electron. 2016, 32, 109; g) L. Zhang, Y.‐X. Zhang, Y. Hu, X.‐B. Shi, Z.‐Q. Jiang, Z.‐K. Wang, L.‐S. Liao, ACS Appl. Mater. Interfaces 2016, 8, 16186; h) J.‐A. Seo, S. K. Jeon, M. S. Gong, J. Y. Lee, C. H. Noh, S. H. Kim, J. Mater. Chem. C 2015, 3, 4640; i) S. K. Jeon, J. Y. Lee, Org. Electron. 2015, 27, 202; j) N. Giebink, B. Dandrade, M. Weaver, J. Brown, S. Forrest, J. Appl. Phys. 2009, 105, 124514.
dc.identifier.citedreferencea) S. Reineke, K. Walzer, K. Leo, Phys. Rev. B 2007, 75, 125328; b)  C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 2000, 77, 904; c) Q. Wang, H. Aziz, ACS Appl. Mater. Interfaces 2013, 5, 8733; d) S. Kim, H. J. Bae, S. Park, W. Kim, J. Kim, J. S. Kim, Y. Jung, S. Sul, S.‐G. Ihn, C. Noh, S. Kim, Y. You, Nat. Commun. 2018, 9, 1211; e) N. Giebink, B. D’Andrade, M. Weaver, P. Mackenzie, J. Brown, M. Thompson, S. Forrest, J. Appl. Phys. 2008, 103, 044509; f) N. K. Patel, S. Cina, J. H. Burroughes, IEEE J. Sel. Top. Quantum Electron. 2002, 8, 346.
dc.identifier.citedreferenceY. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest, Nature 2006, 440, 908.
dc.identifier.citedreferencea) J. X. Sun, X. L. Zhu, H. J. Peng, M. Wong, H. S. Kwok, Org. Electron. 2007, 8, 305; b) N. Sun, Q. Wang, Y. Zhao, Y. Chen, D. Yang, F. Zhao, J. Chen, D. Ma, Adv. Mater. 2014, 26, 1617; c) Y. J. Cho, K. S. Yook, J. Y. Lee, Sci. Rep. 2015, 5, 7859; d) G. M. Farinola, R. Ragni, Chem. Soc. Rev. 2011, 40, 3467; e) G. M. Farinola, R. Ragni, J. Solid State Light. 2015, 2, 9; f) K. T. Kamtekar, A. P. Monkman, M. R. Bryce, Adv. Mater. 2010, 22, 572; g) M. Mazzeo, V. Vitale, F. Della Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani, G. Gigli, Adv. Mater. 2005, 17, 34; h) J. Nishide, H. Nakanotani, Y. Hiraga, C. Adachi, Appl. Phys. Lett. 2014, 104, 233304; i) S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature 2009, 459, 234; j) S. Reineke, M. Thomschke, B. Lüssem, K. Leo, Rev. Mod. Phys. 2013, 85, 1245.
dc.identifier.citedreferenceP. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693.
dc.identifier.citedreferencea) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891; b)  J. J. Chen, S. M. Conron, P. Erwin, M. Dimitriou, K. McAlahney, M. E. Thompson, ACS Appl. Mater. Interfaces 2015, 7, 662; c)  M. Benstead, G. H. Mehl, R. W. Boyle, Tetrahedron 2011, 67, 3573; d) T. Bura, N. Leclerc, S. Fall, P. Lévêque, T. Heiser, P. Retailleau, S. Rihn, A. Mirloup, R. Ziessel, J. Am. Chem. Soc. 2012, 134, 17404; e) Y. Deng, Y.‐y. Cheng, H. Liu, J. Mack, H. Lu, L.‐g. Zhu, Tetrahedron Lett. 2014, 55, 3792; f) A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42, 77; g) J. Karolin, L. B. A. Johansson, L. Strandberg, T. Ny, J. Am. Chem. Soc. 1994, 116, 7801; h) B. Kim, B. Ma, V. R. Donuru, H. Liu, J. M. J. Frechet, Chem. Commun. 2010, 46, 4148; i) S. Kolemen, O. A. Bozdemir, Y. Cakmak, G. Barin, S. Erten‐Ela, M. Marszalek, J. H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, E. U. Akkaya, Chem. Sci. 2011, 2, 949; j) T. Kowada, S. Yamaguchi, H. Fujinaga, K. Ohe, Tetrahedron 2011, 67, 3105; k) S. Kurata, T. Kanagawa, K. Yamada, M. Torimura, T. Yokomaku, Y. Kamagata, R. Kurane, Nucleic Acids Res. 2001, 29, 34e; l) M. R. Momeni, A. Brown, J. Chem. Theory Comput. 2015, 11, 2619; m) A. Orte, E. Debroye, M. J. Ruedas‐Rama, E. Garcia‐Fernandez, D. Robinson, L. Crovetto, E. M. Talavera, J. M. Alvarez‐Pez, V. Leen, B. Verbelen, L. Cunha Dias de Rezende, W. Dehaen, J. Hofkens, M. Van der Auweraer, N. Boens, RSC Adv. 2016, 6, 102899; n) A. Schmitt, B. Hinkeldey, M. Wild, G. Jung, J. Fluoresc. 2009, 19, 755; o) A. Sutter, P. Retailleau, W.‐C. Huang, H.‐W. Lin, R. Ziessel, New J. Chem. 2014, 38, 1701; p) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem., Int. Ed. 2008, 47, 1184; q) X.‐F. Zhang, J. Zhu, J. Lumin. 2019, 212, 286; r) J. Zhao, K. Xu, W. Yang, Z. Wang, F. Zhong, Chem. Soc. Rev. 2015, 44, 8904.
dc.identifier.citedreferencea) J. Bañuelos, F. L. Arbeloa, V. Martinez, M. Liras, A. Costela, I. G. Moreno, I. L. Arbeloa, Phys. Chem. Chem. Phys. 2011, 13, 3437; b) J. H. Golden, J. W. Facendola, M. R. D. Sylvinson, C. Q. Baez, P. I. Djurovich, M. E. Thompson, J. Org. Chem. 2017, 82, 7215; c) J. H. Boyer, A. M. Haag, G. Sathyamoorthi, M.‐L. Soong, K. Thangaraj, T. G. Pavlopoulos, Heteroat. Chem. 1993, 4, 39; d)  G. Sathyamoorthi, M.‐L. Soong, T. W. Ross, J. H. Boyer, Heteroat. Chem. 1993, 4, 603.
dc.identifier.citedreferenceY. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678.
dc.identifier.citedreferenceJ. F. Araneda, W. E. Piers, B. Heyne, M. Parvez, R. McDonald, Angew. Chem., Int. Ed. 2011, 50, 12214.
dc.identifier.citedreferencea) L. Quan, Y. Chen, X. J. Lv, W. F. Fu, Chem. ‐ Eur. J. 2012, 18, 14599; b) Y. Yang, X. Su, C. N. Carroll, I. Aprahamian, Chem. Sci. 2012, 3, 610.
dc.identifier.citedreferencea) D. Wang, R. Liu, C. Chen, S. Wang, J. Chang, C. Wu, H. Zhu, E. R. Waclawik, Dyes Pigm. 2013, 99, 240; b) X. Zhu, H. Huang, R. Liu, X. Jin, Y. Li, D. Wang, Q. Wang, H. Zhu, J. Mater. Chem. C 2015, 3, 3774.
dc.identifier.citedreferenceM. E. Kondakova, J. C. Deaton, T. D. Pawlik, D. J. Giesen, D. Y. Kondakov, R. H. Young, T. L. Royster, D. L. Comfort, J. D. Shore, J. Appl. Phys. 2010, 107, 014515.
dc.identifier.citedreferencea) Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678; b)  S. Oda, B. Kawakami, R. Kawasumi, R. Okita, T. Hatakeyama, Org. Lett. 2019, 21, 9311.
dc.identifier.citedreferencea) H. Ding, H. Yu, Y. Dong, R. Tian, G. Huang, D. A. Boothman, B. D. Sumer, J. Gao, J. Controlled Release 2011, 156, 276; b)  M. H. W. Stopel, C. Blum, V. Subramaniam, J. Phys. Chem. Lett. 2014, 5, 3259; c) C. Sissa, A. Painelli, F. Terenziani, M. Trotta, R. Ragni, Phys. Chem. Chem. Phys. 2020, 22, 129.
dc.identifier.citedreferencea) M. Y. Berezin, S. Achilefu, Chem. Rev. 2010, 110, 2641; b)  O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
dc.identifier.citedreferenceA. Charaf‐Eddin, B. Le Guennic, D. Jacquemin, RSC Adv. 2014, 4, 49449.
dc.identifier.citedreferencea) H. Nakanotani, K. Masui, J. Nishide, T. Shibata, C. Adachi, Sci. Rep. 2013, 3, 2127; b) Y. R. Cho, S. J. Cha, M. C. Suh, Synth. Met. 2015, 209, 47.
dc.identifier.citedreferencea) X. H. Zhang, M. W. Liu, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee, S. K. Wu, Chem. Phys. Lett. 2003, 369, 478; b) S. A. V. Slyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160; c) F. Guo, D. Ma, L. Wang, X. Jing, F. Wang, Semicond. Sci. Technol. 2005, 20, 310.
dc.identifier.citedreferenceM. Kumar, L. Pereira, Nanomaterials 2019, 9, 1307.
dc.identifier.citedreferenceS.‐J. Su, H. Sasabe, T. Takeda, J. Kido, Chem. Mater. 2008, 20, 1691.
dc.identifier.citedreferencea) S. A. Bagnich, S. Athanasopoulos, A. Rudnick, P. Schroegel, I. Bauer, N. C. Greenham, P. Strohriegl, A. Köhler, J. Phys. Chem. C 2015, 119, 2380; b) S. A. Bagnich, A. Rudnick, P. Schroegel, P. Strohriegl, A. Köhler, Philos. Trans. R. Soc., A 2015, 373, 20140446.
dc.identifier.citedreferenceH. Yoshida, K. Yoshizaki, Org. Electron. 2015, 20, 24.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.