Show simple item record

Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach

dc.contributor.authorRouhi Ardeshiri, Reza
dc.contributor.authorMa, Chengbin
dc.date.accessioned2021-09-08T14:34:20Z
dc.date.available2022-10-08 10:34:18en
dc.date.available2021-09-08T14:34:20Z
dc.date.issued2021-09
dc.identifier.citationRouhi Ardeshiri, Reza; Ma, Chengbin (2021). "Multivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach." International Journal of Energy Research 45(11): 16633-16648.
dc.identifier.issn0363-907X
dc.identifier.issn1099-114X
dc.identifier.urihttps://hdl.handle.net/2027.42/169255
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othergated recurrent unit
dc.subject.otherfeature engineering
dc.subject.otherremaining useful life
dc.subject.othermultivariate time series
dc.subject.otherlithium‐ion battery
dc.titleMultivariate gated recurrent unit for battery remaining useful life prediction: A deep learning approach
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169255/1/er6910.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169255/2/er6910_am.pdf
dc.identifier.doi10.1002/er.6910
dc.identifier.sourceInternational Journal of Energy Research
dc.identifier.citedreferenceChen C, Xu T, Wang G, Li B. Railway turnout system RUL prediction based on feature fusion and genetic programming. Measurement. 2020; 151: 107162.
dc.identifier.citedreferenceLiu K, Li Y, Hu X, Lucu M, Widanage WD. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium‐ion batteries. IEEE Trans Ind Infor. 2019; 16 ( 6 ): 3767 ‐ 3777.
dc.identifier.citedreferenceLi X, Wang Z, Yan J. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression. J Power Sources. 2019; 421: 56 ‐ 67.
dc.identifier.citedreferenceLiu K, Hu X, Wei Z, Li Y, Jiang Y. Modified Gaussian process regression models for cyclic capacity prediction of lithium‐ion batteries. IEEE Trans Transp Electr. 2019; 5 ( 4 ): 1225 ‐ 1236.
dc.identifier.citedreferenceLi X, Yuan C, Li X, Wang Z. State of health estimation for Li‐ion battery using incremental capacity analysis and Gaussian process regression. Energy. 2020; 190: 116467.
dc.identifier.citedreferenceLi W, Sengupta N, Dechent P, Howey D, Annaswamy A, Sauer DU. Online capacity estimation of lithium‐ion batteries with deep long short‐term memory networks. J Power Sources. 2021; 482: 228863.
dc.identifier.citedreferenceSong Y, Li L, Peng Y, Liu D. Lithium‐ion battery remaining useful life prediction based on GRU‐RNN. Paper presented at: 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS); October 17‐19, 2018; Shanghai, China:317‐322:IEEE.
dc.identifier.citedreferenceUngurean L, Micea MV, C-rstoiu G. Online state of health prediction method for lithium‐ion batteries, based on gated recurrent unit neural networks. Int J Energy Res. 2020; 44 ( 8 ): 6767 ‐ 6777.
dc.identifier.citedreferenceVenugopal P, Vigneswaran T. State‐of‐health estimation of Li‐ion batteries in electric vehicle using IndRNN under variable load condition. Energies. 2019; 12 ( 22 ): 4338.
dc.identifier.citedreferenceZhang Y, Xiong R, He H, Pecht MG. Long short‐term memory recurrent neural network for remaining useful life prediction of lithium‐ion batteries. IEEE Trans. Veh Technol. 2018; 67 ( 7 ): 5695 ‐ 5705.
dc.identifier.citedreferenceChoi Y, Ryu S, Park K, Kim H. Machine learning‐based lithium‐ion battery capacity estimation exploiting multi‐channel charging profiles. IEEE Access. 2019; 7: 75143 ‐ 75152.
dc.identifier.citedreferenceFeng J, Kvam P, Tang Y. Remaining useful lifetime prediction based on the damage‐marker bivariate degradation model: a case study on lithium‐ion batteries used in electric vehicles. Eng. Failure Anal. 2016; 70: 323 ‐ 342.
dc.identifier.citedreferenceMao W, He J, Zuo MJ. Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning. IEEE Trans. Instrum. Meas. 2019; 69 ( 4 ): 1594 ‐ 1608.
dc.identifier.citedreferenceZhang D, Qian L, Mao B, Huang C, Huang B, Si Y. A data‐driven design for fault detection of wind turbines using random forests and XGboost. IEEE Access. 2018; 6: 21020 ‐ 21031.
dc.identifier.citedreferenceEcer F, Ardabili S, Band SS, Mosavi A. Training multilayer perceptron with genetic algorithms and particle swarm optimization for modeling stock price index prediction. Entropy. 2020; 22 ( 11 ): 1239.
dc.identifier.citedreferenceKingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.2014.
dc.identifier.citedreferenceChin W‐S, Zhuang Y, Juan Y‐C, Lin C‐J. A learning‐rate schedule for stochastic gradient methods to matrix factorization. Pacific‐Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer; 2015: 442 ‐ 455.
dc.identifier.citedreferenceLevy O, Goldberg Y. Neural word embedding as implicit matrix factorization. Paper presented at: NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems; December 2014:2177‐2185.
dc.identifier.citedreferenceZhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning requires rethinking generalization. arXiv Preprint arXiv:1611.03530.2016.
dc.identifier.citedreferenceFinnoff W, Hergert F, Zimmermann HG. Improving model selection by nonconvergent methods. Neural Netw. 1993; 6 ( 6 ): 771 ‐ 783.
dc.identifier.citedreferenceFan J, Fan J, Liu F, Qu J, Li R. A novel machine learning method based approach for Li‐ion battery prognostic and health management. IEEE Access. 2019; 7: 160043.
dc.identifier.citedreferenceLiu K, Li K, Peng Q, Zhang C. A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 2019; 14 ( 1 ): 47 ‐ 64.
dc.identifier.citedreferenceLiu Z, Mohammadzadeh A, Turabieh H, Mafarja M, Band SS, Mosavi A. A new online learned interval type‐3 fuzzy control system for solar energy management systems. IEEE Access. 2021; 9: 10498 ‐ 10508.
dc.identifier.citedreferenceNaha A, Khandelwal A, Hariharan KS, Kaushik A, Yadu A, Kolake SM. On‐board short circuit detection of Li‐ion batteries undergoing fixed charging profile as in smartphone applications. IEEE Trans. Ind. Electron. 2019; 66 ( 11 ): 8782 ‐ 8791.
dc.identifier.citedreferenceEl Mejdoubi A, Chaoui H, Gualous H, Van Den Bossche P, Omar N, Van Mierlo J. Lithium‐ion batteries health prognosis considering aging conditions. IEEE Trans. Power Electron. 2018; 34 ( 7 ): 6834 ‐ 6844.
dc.identifier.citedreferenceLiao L, Köttig F. Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans Reliab. 2014; 63 ( 1 ): 191 ‐ 207.
dc.identifier.citedreferenceShen D, Wu L, Kang G, Guan Y, Peng Z. A novel online method for predicting the remaining useful life of lithium‐ion batteries considering random variable discharge current. Energy. 2021; 218: 119490.
dc.identifier.citedreferenceChen L, Wang H, Chen J, et al. A novel remaining useful life prediction framework for lithium‐ion battery using grey model and particle filtering. Int J Energy Res. 2020; 44 ( 9 ): 7435 ‐ 7449.
dc.identifier.citedreferenceChang Y, Fang H, Zhang Y. A new hybrid method for the prediction of the remaining useful life of a lithium‐ion battery. Appl Energy. 2017; 206: 1564 ‐ 1578.
dc.identifier.citedreferenceLyu Z, Gao R. Li‐ion battery state of health estimation through Gaussian process regression with Thevenin model. Int J Energy Res. 2020; 44 ( 13 ): 10262 ‐ 10281.
dc.identifier.citedreferenceShamshirband S, Fathi M, Chronopoulos AT, Montieri A, Palumbo F, Pescapè A. Computational intelligence intrusion detection techniques in mobile cloud computing environments: review, taxonomy, and open research issues. J Information Security Appl. 2020; 55: 102582.
dc.identifier.citedreferenceShamshirband S, Rabczuk T, Chau K‐W. A survey of deep learning techniques: application in wind and solar energy resources. IEEE Access. 2019; 7: 164650.
dc.identifier.citedreferenceLiu K, Hu X, Zhou H, Tong L, Widanalage D, Marco J. Feature analyses and modelling of lithium‐ion batteries manufacturing based on random forest classification. IEEE/ASME Trans Mechatronics. 2021; 1 ‐ 1. http://dx.doi.org/10.1109/tmech.2020.3049046.
dc.identifier.citedreferenceQummar S, Khan FG, Shah S, et al. A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access. 2019; 7: 150530.
dc.identifier.citedreferenceShamshirband S, Fathi M, Dehzangi A, Chronopoulos AT, Alinejad‐Rokny H. A review on deep learning approaches in healthcare systems: taxonomies, challenges, and open issues. J Biomed Inform. 2020; 113: 103627
dc.identifier.citedreferenceHu X, Che Y, Lin X, Onori S. Battery health prediction using fusion‐based feature selection and machine learning. IEEE Trans Transp Electr. 2020; 7 ( 2 ): 382 ‐ 398.
dc.identifier.citedreferenceArdeshiri RR, Balagopal B, Alsabbagh A, Ma C, Chow M‐Y. Machine learning approaches in battery management systems: state of the art: remaining useful life and fault detection. Paper presented at: 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES); September 1‐3, 2020; Cagliari, Italy:61‐66:IEEE.
dc.identifier.citedreferenceMahmoudi MR, Baleanu D, Qasem SN, Mosavi A, Band SS. Fuzzy clustering to classify several time series models with fractional Brownian motion errors. Alex Eng J. 2021; 60 ( 1 ): 1137 ‐ 1145.
dc.identifier.citedreferenceLi Y, Li K, Liu X, Wang Y, Zhang L. Lithium‐ion battery capacity estimation—A pruned convolutional neural network approach assisted with transfer learning. Appl Energy. 2021; 285: 116410.
dc.identifier.citedreferenceWang Z‐H, Hendrick, Horng G‐J, Wu H‐T, Jong G‐J. A prediction method for voltage and lifetime of lead–acid battery by using machine learning. Energy Explor Exploit. 2020; 38 ( 1 ): 310 ‐ 329.
dc.identifier.citedreferenceLiu K, Ashwin TR, Hu X, Lucu M, Widanage WD. An evaluation study of different modelling techniques for calendar ageing prediction of lithium‐ion batteries. Renewable Sustainable Energy Rev. 2020; 131: 110017.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.