Show simple item record

Planning and Conducting a Pharmacogenetics Association Study

dc.contributor.authorHertz, Daniel L.
dc.contributor.authorArwood, Meghan J.
dc.contributor.authorStocco, Gabriele
dc.contributor.authorSingh, Sonal
dc.contributor.authorKarnes, Jason H.
dc.contributor.authorRamsey, Laura B.
dc.date.accessioned2021-09-08T14:34:32Z
dc.date.available2022-10-08 10:34:31en
dc.date.available2021-09-08T14:34:32Z
dc.date.issued2021-09
dc.identifier.citationHertz, Daniel L.; Arwood, Meghan J.; Stocco, Gabriele; Singh, Sonal; Karnes, Jason H.; Ramsey, Laura B. (2021). "Planning and Conducting a Pharmacogenetics Association Study." Clinical Pharmacology & Therapeutics (3): 688-701.
dc.identifier.issn0009-9236
dc.identifier.issn1532-6535
dc.identifier.urihttps://hdl.handle.net/2027.42/169261
dc.publisherWiley‐Blackwell
dc.titlePlanning and Conducting a Pharmacogenetics Association Study
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169261/1/cpt2270.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169261/2/cpt2270_am.pdf
dc.identifier.doi10.1002/cpt.2270
dc.identifier.sourceClinical Pharmacology & Therapeutics
dc.identifier.citedreferenceTreviño, L.R. et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol. 27, 5972 – 5978 ( 2009 ).
dc.identifier.citedreferenceDeng, H.W., Chen, W.M. & Recker, R.R. Population admixture: detection by Hardy‐Weinberg test and its quantitative effects on linkage‐disequilibrium methods for localizing genes underlying complex traits. Genetics 157, 885 – 897 ( 2001 ).
dc.identifier.citedreferencePanagiotou, O.A. & Ioannidis, J.P.A. What should the genome‐wide significance threshold be? Empirical replication of borderline genetic associations. Int. J. Epidemiol. 41, 273 – 286 ( 2012 ).
dc.identifier.citedreferenceWilkening, S., Chen, B., Bermejo, J.L. & Canzian, F. Is there still a need for candidate gene approaches in the era of genome‐wide association studies? Genomics 93, 415 – 419 ( 2009 ).
dc.identifier.citedreferenceDuncan, L.E., Ostacher, M. & Ballon, J. How genome‐wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology 44, 1518 – 1523 ( 2019 ).
dc.identifier.citedreferenceHochberg, Y. & Benjamini, Y. More powerful procedures for multiple significance testing. Stat Med. 9, 811 – 818 ( 1990 ).
dc.identifier.citedreferenceAttia, J. et al. How to use an article about genetic association: A: Background concepts. JAMA 301, 74 – 81 ( 2009 ).
dc.identifier.citedreferenceInternational HapMap Consortium. The International HapMap Project. Nature 426, 789 – 796 ( 2003 ).
dc.identifier.citedreferenceAttia, J. et al. How to use an article about genetic association: B: Are the results of the study valid? JAMA 301, 191 – 197 ( 2009 ).
dc.identifier.citedreferenceRoss, S., Anand, S.S., Joseph, P. & Paré, G. Promises and challenges of pharmacogenetics: an overview of study design, methodological and statistical issues. JRSM Cardiovasc. Dis. 1, cvd.2012.012001 ( 2012 ).
dc.identifier.citedreferenceManolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747 – 753 ( 2009 ).
dc.identifier.citedreferenceFaul, F., Erdfelder, E., Buchner, A. & Lang, A.‐G. Statistical power analyses using G Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149 – 1160 ( 2009 ).
dc.identifier.citedreferenceDupont, W.D. & Plummer, W.D. Jr. Power and sample size calculations for studies involving linear regression. Control Clin. Trials 19, 589 – 601 ( 1998 ).
dc.identifier.citedreferenceLeckband, S.G. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA‐B genotype and carbamazepine dosing. Clin. Pharmacol. Ther. 94, 324 – 328 ( 2013 ).
dc.identifier.citedreferenceChanock, S.J. et al. Replicating genotype‐phenotype associations. Nature 447, 655 – 660 ( 2007 ).
dc.identifier.citedreferenceHirschhorn, J.N. & Daly, M.J. Genome‐wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95 – 108 ( 2005 ).
dc.identifier.citedreferenceWard, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930 – D934 ( 2012 ).
dc.identifier.citedreferenceGTEx Consortium. The Genotype‐Tissue Expression (GTEx) project. Nat. Genet. 45, 580 – 585 ( 2013 ).
dc.identifier.citedreferenceChaplin, M., Kirkham, J.J., Dwan, K., Sloan, D.J., Davies, G. & Jorgensen, A.L. STrengthening the reporting of pharmacogenetic studies: development of the STROPS guideline. PLoS Med. 17, e1003344 ( 2020 ).
dc.identifier.citedreferenceCaudle, K.E. et al. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci. 13, 116 – 124 ( 2020 ).
dc.identifier.citedreferenceMotsinger‐Reif, A.A. et al. Genome‐wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet. Genomics 23, 383 – 394 ( 2013 ).
dc.identifier.citedreferencedi Iulio, J. & Rotger, M. Pharmacogenomics: what is next? Front Pharmacol. 2, 86 ( 2012 )
dc.identifier.citedreferenceCrowley, J.J., Sullivan, P.F. & McLeod, H.L. Pharmacogenomic genome‐wide association studies: lessons learned thus far. Pharmacogenomics 10, 161 – 163 ( 2009 ).
dc.identifier.citedreferenceAttia, J. et al. How to use an article about genetic association: C: What are the results and will they help me in caring for my patients? JAMA 301, 304 – 308 ( 2009 ).
dc.identifier.citedreferenceHung, S.‐I. et al. Genetic susceptibility to carbamazepine‐induced cutaneous adverse drug reactions. Pharmacogenet. Genomics. 16, 297 – 306 ( 2006 ).
dc.identifier.citedreferenceMcDonagh, E.M., Whirl‐Carrillo, M., Altman, R.B. & Klein, T.E. Enabling the curation of your pharmacogenetic study. Clin. Pharmacol. Ther. 97, 116 – 119 ( 2015 ).
dc.identifier.citedreferenceChidambaram, A.G. & Josephson, M. Clinical research study designs: the essentials. Pediatr. Investig. 3, 245 – 252 ( 2019 ).
dc.identifier.citedreferenceTeutsch, S.M. et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet. Med. 11, 3 – 14 ( 2009 ).
dc.identifier.citedreferenceLemieux Perreault, L.‐P., Zaïd, N., Cameron, M., Mongrain, I. & Dubé, M.‐P. Pharmacogenetic content of commercial genome‐wide genotyping arrays. Pharmacogenomics 19, 1159 – 1167 ( 2018 ).
dc.identifier.citedreferenceLuzum, J.A. et al. The pharmacogenomics research network translational pharmacogenetics program: outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin. Pharmacol. Ther. 102, 502 – 510 ( 2017 ).
dc.identifier.citedreferenceArwood, M.J., Chumnumwat, S., Cavallari, L.H., Nutescu, E.A. & Duarte, J.D. Implementing Pharmacogenomics At Your Institution: Establishment And Overcoming Implementation challenges. Clin. Transl. Sci. 9, 233 – 245 ( 2016 ).
dc.identifier.citedreferenceXiao, R. & Boehnke, M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet. Epidemiol. 33, 453 – 462 ( 2009 ).
dc.identifier.citedreferenceIoannidis, J.P.A. To replicate or not to replicate: the case of pharmacogenetic studies: Have pharmacogenomics failed, or do they just need larger‐scale evidence and more replication? Circ. Cardiovasc. Genet. 6, 413 – 418 ( 2013 ).
dc.identifier.citedreferenceIoannidis, J.P.A. Why most published research findings are false. PLoS Med. 2, e124 ( 2005 ).
dc.identifier.citedreferenceSafran, C. et al. Toward a national framework for the secondary use of health data: an American Medical Informatics Association White Paper. J. Am. Med. Inform. Assoc. 14, 1 – 9 ( 2007 ).
dc.identifier.citedreferenceWorld Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA 284, 3043 – 3045 ( 2000 ).
dc.identifier.citedreferenceMcGuire, A.L. & Majumder, M.A. Two cheers for GINA? Genome Med. 1, 6 ( 2009 ).
dc.identifier.citedreferenceChevrier, R., Foufi, V., Gaudet‐Blavignac, C., Robert, A. & Lovis, C. Use and understanding of anonymization and de‐identification in the biomedical literature: scoping review. J. Med. Internet Res. 21, e13484 ( 2019 ).
dc.identifier.citedreferencePulley, J., Clayton, E., Bernard, G.R., Roden, D.M. & Masys, D.R. Principles of human subjects protections applied in an opt‐out, de‐identified biobank. Clin. Transl. Sci. 3, 42 – 48 ( 2010 ).
dc.identifier.citedreferenceFullerton, S.M. & Lee, S.S.‐J. Secondary uses and the governance of de‐identified data: lessons from the human genome diversity panel. BMC Med. Ethics 12, 16 ( 2011 ).
dc.identifier.citedreferenceWang, X. & Kattan, M.W. Cohort studies: design, analysis, and reporting. Chest 158, S72 – S78 ( 2020 ).
dc.identifier.citedreferenceConway, M. et al. Analyzing the heterogeneity and complexity of Electronic Health Record oriented phenotyping algorithms. AMIA Annu. Symp. Proc. 2011, 274 – 283 ( 2011 ).
dc.identifier.citedreferenceDiPietro, N.A. Methods in epidemiology: observational study designs. Pharmacotherapy 30, 973 – 984 ( 2010 ).
dc.identifier.citedreferenceRatain, M.J., Miller, A.A., McLeod, H.L., Venook, A.P., Egorin, M.J. & Schilsky, R.L. The cancer and leukemia group B pharmacology and experimental therapeutics committee: a historical perspective. Clin. Cancer Res. 12, 3612s – 3616s ( 2006 ).
dc.identifier.citedreferenceWright, A.F., Carothers, A.D. & Campbell, H. Gene‐environment interactions–the BioBank UK study. Pharmacogenomics J. 2, 75 – 82 ( 2002 ).
dc.identifier.citedreferencePorzsolt, F., Wiedemann, F., Becker, S.I. & Rhoads, C.J. Inclusion and exclusion criteria and the problem of describing homogeneity of study populations in clinical trials. BMJ Evid. Based Med. 24, 92 – 94 ( 2019 ).
dc.identifier.citedreferenceHaga, S.B. & LaPointe, N.M.A. The potential impact of pharmacogenetic testing on medication adherence. Pharmacogenomics J. 13, 481 – 483 ( 2013 ).
dc.identifier.citedreferenceSterne, J.A.C., Hernán, M.A., McAleenan, A., Reeves, B.C. & Higgins, J.P.T. Assessing risk of bias in a non‐randomized study. In Cochrane Handbook for Systematic Reviews of Interventions (eds. Higgins, J.P. et al.) 621 – 641 ( Wiley‐Blackwell, Hoboken, 2019 ).
dc.identifier.citedreferenceCaudle, K.E., Keeling, N.J., Klein, T.E., Whirl‐Carrillo, M., Pratt, V.M. & Hoffman, J.M. Standardization can accelerate the adoption of pharmacogenomics: current status and the path forward. Pharmacogenomics 19, 847 – 860 ( 2018 ).
dc.identifier.citedreferenceGrady, B.J. & Ritchie, M.D. Statistical optimization of pharmacogenomics association studies: key considerations from study design to analysis. Curr. Pharmacogenomics. Person Med. 9, 41 – 66 ( 2011 ).
dc.identifier.citedreferenceBasch, E. et al. Patient versus clinician symptom reporting using the National Cancer Institute Common Terminology Criteria for Adverse Events: results of a questionnaire‐based study. Lancet Oncol. 7, 903 – 909 ( 2006 ).
dc.identifier.citedreferenceHertz, D.L. Concerns regarding use of patient‐reported outcomes in biomarker studies of chemotherapy‐induced peripheral neuropathy. Pharmacogenomics J. 19, 411 – 416 ( 2019 ).
dc.identifier.citedreferenceBasch, E. et al. Development of the National Cancer Institute’s patient‐reported outcomes version of the common terminology criteria for adverse events (PRO‐CTCAE). J. Natl. Cancer Inst. 106, dju244 ( 2014 ).
dc.identifier.citedreferenceAltman, D.G. & Royston, P. The cost of dichotomising continuous variables. BMJ 332, 1080 ( 2006 ).
dc.identifier.citedreferencePrentice, R.L., Kalbfleisch, J.D., Peterson, A.V. Jr, Flournoy, N., Farewell, V.T. & Breslow, N.E. The analysis of failure times in the presence of competing risks. Biometrics 34, 541 – 554 ( 1978 ).
dc.identifier.citedreferenceMega, J.L. et al. Cytochrome P‐450 Polymorphisms and Response to Clopidogrel. N. Engl. J. Med. 360, 354 – 362 ( 2009 ).
dc.identifier.citedreferenceCommon Terminology Criteria for Adverse Events (CTCAE) Version 4.0: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute < https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm > ( 2010 ).
dc.identifier.citedreferenceAhern, T.P. Pharmacoepidemiology in pharmacogenetics. Adv. Pharmacol. 83, 109 – 130 ( 2018 )
dc.identifier.citedreferenceMaranville, J.C. & Cox, N.J. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits. Pharmacogenomics J. 16, 388 – 392 ( 2016 ).
dc.identifier.citedreferenceWang, L., McLeod, H.L. & Weinshilboum, R.M. Genomics and drug response. N Engl J Med. 364, 1144 – 1153 ( 2011 ).
dc.identifier.citedreferenceBirdwell, K.A. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 98, 19 – 24 ( 2015 ).
dc.identifier.citedreferenceYukawa, E. Population‐based investigations of drug relative clearance using nonlinear mixed‐effect modelling from information generated during the routine clinical care of patients. J. Clin. Pharm. Ther. 24, 103 – 113 ( 1999 ).
dc.identifier.citedreferenceInaba, T., Vinks, A., Otton, S.V. & Kalow, W. Comparative pharmacogenetics of sparteine and debrisoquine. Clin. Pharmacol. Ther. 33, 394 – 399 ( 1983 ).
dc.identifier.citedreferenceHertz, D.L. & McLeod, H.L. Using pharmacogene polymorphism panels to detect germline pharmacodynamic markers in oncology. Clin Cancer Res. 20, 2530 – 2540 ( 2014 ).
dc.identifier.citedreferenceInternational Warfarin Pharmacogenetics Consortium et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753 ‐ 764 ( 2009 ).
dc.identifier.citedreferenceXu, C.‐F. et al. HLA‐B 57:01 confers susceptibility to pazopanib‐associated Liver Injury in Patients with Cancer. Clin. Cancer Res. 22, 1371 – 1377 ( 2016 ).
dc.identifier.citedreferenceHertz, D.L. & Rae, J.M. One step at a time: CYP2D6 guided tamoxifen treatment awaits convincing evidence of clinical validity. Pharmacogenomics 17, 823 – 826 ( 2016 ).
dc.identifier.citedreferenceBegg, E.J., Helsby, N.A. & Jensen, B.P. Pharmacogenetics of drug‐metabolizing enzymes: the prodrug hypothesis. Pharmacogenomics 13, 83 – 89 ( 2012 ).
dc.identifier.citedreferenceDaly, A.K. Using genome‐wide association studies to identify genes important in serious adverse drug reactions. Annu. Rev. Pharmacol. Toxicol. 52, 21 – 35 ( 2012 ).
dc.identifier.citedreferenceMartin, M.A. & Kroetz, D.L. Abacavir pharmacogenetics–from initial reports to standard of care. Pharmacotherapy 33, 765 – 775 ( 2013 ).
dc.identifier.citedreferenceChung, W.‐H. et al. Medical genetics: a marker for Stevens‐Johnson syndrome. Nature 428, 486 ( 2004 ).
dc.identifier.citedreferenceChua, K.C. & Kroetz, D.L. Genetic advances uncover mechanisms of chemotherapy‐induced peripheral neuropathy. Clin. Pharmacol. Ther. 101, 450 – 452 ( 2017 ).
dc.identifier.citedreferenceJohnson, J.A. et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 90, 625 – 629 ( 2011 ).
dc.identifier.citedreferenceHertz, D.L. Exploring pharmacogenetics of paclitaxel‐ and docetaxel‐induced peripheral neuropathy by evaluating the direct pharmacogenetic‐pharmacokinetic and pharmacokinetic‐neuropathy relationships. Expert Opin. Drug Metab. Toxicol. 17, 227 – 239 ( 2021 ).
dc.identifier.citedreferenceInstitute of Medicine Evolution of Translational Omics: Lessons Learned and the Path Forward ( The National Academies Press, Washington, DC, 2012 ).
dc.identifier.citedreferenceSherry, S.T., Ward, M. & Sirotkin, K. dbSNP‐database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 9, 677 – 679 ( 1999 ).
dc.identifier.citedreferenceElston, R.C., Satagopan, J.M. & Sun, S. Genetic terminology. Methods Mol. Biol. 850, 1 – 9 ( 2012 ).
dc.identifier.citedreferencePirmohamed, M. Pharmacogenetics and pharmacogenomics. Br. J. Clin. Pharmacol. 52, 345 – 347 ( 2001 ).
dc.identifier.citedreferenceBarbarino, J.M., Whirl‐Carrillo, M., Altman, R.B. & Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1417 ( 2018 ).
dc.identifier.citedreferenceRelling, M.V., Klein, T.E., Gammal, R.S., Whirl‐Carrillo, M., Hoffman, J.M. & Caudle, K.E. The Clinical Pharmacogenetics Implementation Consortium: 10 years later. Clin. Pharmacol. Ther. 107, 171 – 175 ( 2020 ).
dc.identifier.citedreferenceSangkuhl, K. et al. Pharmacogenomics Clinical Annotation Tool (PharmCAT). Clin. Pharmacol. Ther. 107, 203 – 210 ( 2020 ).
dc.identifier.citedreferenceGoetz, M.P. et al. Loss of Heterozygosity at the CYP2D6 locus in breast cancer: implications for germline pharmacogenetic studies. J. Natl. Cancer Inst. 107, dju401 ( 2015 ).
dc.identifier.citedreferenceHertz, D.L. et al. DNA derived from archival tumor specimens can be used for germline pharmacogenetic analyses. Pharmacogenomics 21, 899 – 902 ( 2020 ).
dc.identifier.citedreferenceAquilante, C.L., Zineh, I., Beitelshees, A.L. & Langaee, T.Y. Common laboratory methods in pharmacogenomics studies. Am. J. Health Syst. Pharm. 63, 2101 – 2110 ( 2006 ).
dc.identifier.citedreferenceArbitrio, M. et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 7, 54028 – 54050 ( 2016 ).
dc.identifier.citedreferenceMeng, Z., Zaykin, D.V., Xu, C.‐F., Wagner, M. & Ehm, M.G. Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes. Am. J. Hum. Genet. 73, 115 – 130 ( 2003 ).
dc.identifier.citedreferenceMarchini, J. & Howie, B. Genotype imputation for genome‐wide association studies. Nat. Rev. Genet. 11, 499 – 511 ( 2010 ).
dc.identifier.citedreferenceHowie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome‐wide association studies. PLoS Genet. 5, e1000529 ( 2009 ).
dc.identifier.citedreferenceVergara, C. et al. Genotype imputation performance of three reference panels using African ancestry individuals. Hum Genet. 137, 281 – 292 ( 2018 ).
dc.identifier.citedreferenceLi, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816 – 834 ( 2010 ).
dc.identifier.citedreferenceGulilat, M. et al. Targeted next generation sequencing as a tool for precision medicine. BMC Med. Genomics 12, 81 ( 2019 ).
dc.identifier.citedreferenceLee, S.‐B. et al. Stargazer: a software tool for calling star alleles from next‐generation sequencing data using CYP2D6 as a model. Genet Med. 21, 361 – 372 ( 2019 ).
dc.identifier.citedreferenceBush, W.S. & Moore, J.H. Chapter 11: Genome‐wide association studies. PLoS Comput. Biol. 8, e1002822 (2012).
dc.identifier.citedreferenceJorgensen, A.L. & Williamson, P.R. Methodological quality of pharmacogenetic studies: issues of concern. Stat. Med. 27, 6547 – 6569 ( 2008 ).
dc.identifier.citedreferenceHorita, N. & Kaneko, T. Genetic model selection for a case‐control study and a meta‐analysis. Meta Gene 5, 1 – 8 ( 2015 ).
dc.identifier.citedreferenceSrinivasan, B.S. et al. Methods for analysis in pharmacogenomics: lessons from the Pharmacogenetics Research Network Analysis Group. Pharmacogenomics 10, 243 – 251 ( 2009 ).
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.