Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores
dc.contributor.author | Vargo, Natasha P. | |
dc.contributor.author | Harland, Jill B. | |
dc.contributor.author | Musselman, Bradley W. | |
dc.contributor.author | Lehnert, Nicolai | |
dc.contributor.author | Ertem, Mehmed Z. | |
dc.contributor.author | Robinson, Jerome R. | |
dc.date.accessioned | 2021-09-08T14:35:12Z | |
dc.date.available | 2022-10-08 10:35:10 | en |
dc.date.available | 2021-09-08T14:35:12Z | |
dc.date.issued | 2021-09-01 | |
dc.identifier.citation | Vargo, Natasha P.; Harland, Jill B.; Musselman, Bradley W.; Lehnert, Nicolai; Ertem, Mehmed Z.; Robinson, Jerome R. (2021). "Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores." Angewandte Chemie International Edition 60(36): 19836-19842. | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.issn | 1521-3773 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/169279 | |
dc.description.abstract | Coupled dinuclear copper oxygen cores (Cu2O2) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ‐1,2‐cis peroxido dicopper cores (CP) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic CP cores in biological and synthetic systems, the properties and reactivity of CP Cu2O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ‐1,2‐trans peroxido (TP) and CP dicopper cores. CaII mediates this process by reversible binding at the Cu2O2 core, highlighting the unique capability for metal‐ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.Calcium‐ion binding mediates the reversible interconversion of the prototypical trans‐peroxido Cu2O2 core (TP) to the rare and biologically relevant cis‐peroxido Cu2O2 core (CP). This provides new opportunities to stabilize novel reactive fragments and control O2 activation in biomimetic systems. | |
dc.publisher | Elsevier | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | calcium | |
dc.subject.other | copper | |
dc.subject.other | heterometallic complexes | |
dc.subject.other | peroxides | |
dc.subject.other | bioinorganic chemistry | |
dc.title | Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/169279/1/anie202105421-sup-0001-misc_information.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/169279/2/anie202105421_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/169279/3/anie202105421.pdf | |
dc.identifier.doi | 10.1002/anie.202105421 | |
dc.identifier.source | Angewandte Chemie International Edition | |
dc.identifier.citedreference | S. Yao, Y. Xiong, M. Vogt, H. Grützmacher, C. Herwig, C. Limberg, M. Driess, Angew. Chem. Int. Ed. 2009, 48, 8107 – 8110; | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | H. Decker, T. Schweikardt, D. Nillius, U. Salzbrunn, E. Jaenicke, F. Tuczek, Gene 2007, 398, 183 – 191; | |
dc.identifier.citedreference | J. W. Ginsbach, M. T. Kieber-Emmons, R. Nomoto, A. Noguchi, Y. Ohnishi, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2012, 109, 10793 – 10797; | |
dc.identifier.citedreference | E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659 – 3853. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013 – 1046; | |
dc.identifier.citedreference | E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047 – 1076; | |
dc.identifier.citedreference | C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059 – 2107. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | N. Kitajima, K. Fujisawa, Y. Morooka, K. Toriumi, J. Am. Chem. Soc. 1989, 111, 8975 – 8976; | |
dc.identifier.citedreference | N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Morooka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc. 1992, 114, 1277 – 1291; | |
dc.identifier.citedreference | R. R. Jacobson, Z. Tyeklar, A. Farooq, K. D. Karlin, S. Liu, J. Zubieta, J. Am. Chem. Soc. 1988, 110, 3690 – 3692; | |
dc.identifier.citedreference | K. D. Karlin, Z. Tyeklár, A. Farooq, R. R. Jacobson, E. Sinn, D. W. Lee, J. E. Bradshaw, L. J. Wilson, Inorg. Chim. Acta 1991, 182, 1 – 3; | |
dc.identifier.citedreference | J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, L. Que, A. D. Zuberbuhler, W. B. Tolman, Science 1996, 271, 1397 – 1400; | |
dc.identifier.citedreference | M. J. Henson, V. Mahadevan, T. D. P. Stack, E. I. Solomon, Inorg. Chem. 2001, 40, 5068 – 5069; | |
dc.identifier.citedreference | B. A. Jazdzewski, A. M. Reynolds, P. L. Holland, V. G. Young, S. Kaderli, A. D. Zuberbühler, W. B. Tolman, J. Biol. Inorg. Chem. 2003, 8, 381 – 393; | |
dc.identifier.citedreference | L. M. Mirica, D. J. Rudd, M. A. Vance, E. I. Solomon, K. O. Hodgson, B. Hedman, T. D. P. Stack, J. Am. Chem. Soc. 2006, 128, 2654 – 2665; | |
dc.identifier.citedreference | M. Asahi, S.-i. Yamazaki, S. Itoh, T. Ioroi, Dalton Trans. 2014, 43, 10705 – 10709; | |
dc.identifier.citedreference | K. Ray, F. Heims, M. Schwalbe, W. Nam, Curr. Opin. Chem. Biol. 2015, 25, 159 – 171; | |
dc.identifier.citedreference | X.-J. Su, M. Gao, L. Jiao, R.-Z. Liao, P. E. M. Siegbahn, J.-P. Cheng, M.-T. Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909 – 4914; | |
dc.identifier.citedreference | R.-J. Xiang, H.-Y. Wang, Z.-J. Xin, C.-B. Li, Y.-X. Lu, X.-W. Gao, H.-M. Sun, R. Cao, Chem. Eur. J. 2016, 22, 1602 – 1607; | |
dc.identifier.citedreference | M. Asahi, S.-i. Yamazaki, S. Itoh, T. Ioroi, Electrochim. Acta 2016, 211, 193 – 198; | |
dc.identifier.citedreference | M. Langerman, D. G. H. Hetterscheid, Angew. Chem. Int. Ed. 2019, 58, 12974 – 12978; | |
dc.identifier.citedreference | N. W. G. Smits, B. van Dijk, I. de Bruin, S. L. T. Groeneveld, M. A. Siegler, D. G. H. Hetterscheid, Inorg. Chem. 2020, 59, 16398 – 16409. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | Z. Tyeklar, R. R. Jacobson, N. Wei, N. N. Murthy, J. Zubieta, K. D. Karlin, J. Am. Chem. Soc. 1993, 115, 2677 – 2689; | |
dc.identifier.citedreference | K. Komiyama, H. Furutachi, S. Nagatomo, A. Hashimoto, H. Hayashi, S. Fujinami, M. Suzuki, T. Kitagawa, Bull. Chem. Soc. Jpn. 2004, 77, 59 – 72; | |
dc.identifier.citedreference | C. Würtele, O. Sander, V. Lutz, T. Waitz, F. Tuczek, S. Schindler, J. Am. Chem. Soc. 2009, 131, 7544 – 7545; | |
dc.identifier.citedreference | T. Hoppe, S. Schaub, J. Becker, C. Würtele, S. Schindler, Angew. Chem. Int. Ed. 2013, 52, 870 – 873; | |
dc.identifier.citedreference | E. W. Dahl, H. T. Dong, N. K. Szymczak, Chem. Commun. 2018, 54, 892 – 895. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | M. Kodera, K. Katayama, Y. Tachi, K. Kano, S. Hirota, S. Fujinami, M. Suzuki, J. Am. Chem. Soc. 1999, 121, 11006 – 11007; | |
dc.identifier.citedreference | I. Bertini, H. B. Gray, E. I. Stiefel, J. S. Valentine, Biological Inorganic Chemistry: Structure and Reactivity, University Science Books, Sausalito, CA, 2007; | |
dc.identifier.citedreference | J. Yano, V. Yachandra, Chem. Rev. 2014, 114, 4175 – 4205; | |
dc.identifier.citedreference | M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 2015, 517, 99 – 103. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Fukuzumi, K. Ohkubo, Y.-M. Lee, W. Nam, Chem. Eur. J. 2015, 21, 17548 – 17559; | |
dc.identifier.citedreference | T. Devi, Y.-M. Lee, W. Nam, S. Fukuzumi, Coord. Chem. Rev. 2020, 410, 213219; | |
dc.identifier.citedreference | B. Gerey, E. Gouré, J. Fortage, J. Pécaut, M.-N. Collomb, Coord. Chem. Rev. 2016, 319, 1 – 24; | |
dc.identifier.citedreference | J. S. Kanady, E. Y. Tsui, M. W. Day, T. Agapie, Science 2011, 333, 733 – 736; | |
dc.identifier.citedreference | E. Y. Tsui, R. Tran, J. Yano, T. Agapie, Nat. Chem. 2013, 5, 293 – 299; | |
dc.identifier.citedreference | H. Ohtsu, Y. Shimazaki, A. Odani, O. Yamauchi, W. Mori, S. Itoh, S. Fukuzumi, J. Am. Chem. Soc. 2000, 122, 5733 – 5741; | |
dc.identifier.citedreference | L. Li, A. A. Narducci Sarjeant, M. A. Vance, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2005, 127, 15360 – 15361; | |
dc.identifier.citedreference | S. Teramae, T. Osako, S. Nagatomo, T. Kitagawa, S. Fukuzumi, S. Itoh, J. Inorg. Biochem. 2004, 98, 746 – 757; | |
dc.identifier.citedreference | K. Itoh, H. Hayashi, H. Furutachi, T. Matsumoto, S. Nagatomo, T. Tosha, S. Terada, S. Fujinami, M. Suzuki, T. Kitagawa, J. Am. Chem. Soc. 2005, 127, 5212 – 5223; | |
dc.identifier.citedreference | G. Battaini, E. Monzani, A. Perotti, C. Para, L. Casella, L. Santagostini, M. Gullotti, R. Dillinger, C. Näther, F. Tuczek, J. Am. Chem. Soc. 2003, 125, 4185 – 4198; | |
dc.identifier.citedreference | N. Kindermann, S. Dechert, S. Demeshko, F. Meyer, J. Am. Chem. Soc. 2015, 137, 8002 – 8005. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | K. D. Karlin, R. W. Cruse, Y. Gultneh, Chem. Commun. 1987, 599 – 600; | |
dc.identifier.citedreference | K. D. Karlin, P. Ghosh, R. W. Cruse, A. Farooq, Y. Gultneh, R. R. Jacobson, N. J. Blackburn, R. W. Strange, J. Zubieta, J. Am. Chem. Soc. 1988, 110, 6769 – 6780; | |
dc.identifier.citedreference | L. Li, A. A. N. Sarjeant, K. D. Karlin, Inorg. Chem. 2006, 45, 7160 – 7172. | |
dc.identifier.citedreference | S. Yamaguchi, A. Wada, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Chem. Lett. 2004, 33, 1556 – 1557. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | D. F. Evans, J. Chem. Soc. 1959, 2003 – 2005; | |
dc.identifier.citedreference | E. M. Schubert, J. Chem. Educ. 1992, 69, 62; | |
dc.identifier.citedreference | C. Piguet, J. Chem. Educ. 1997, 74, 815. | |
dc.identifier.citedreference | J. M. Brink, R. A. Rose, R. C. Holz, Inorg. Chem. 1996, 35, 2878 – 2885. | |
dc.identifier.citedreference | N. Zhao, A. S. Filatov, J. Xie, E. A. Hill, A. Y. Rogachev, J. S. Anderson, J. Am. Chem. Soc. 2020, 142, 21634 – 21639. | |
dc.identifier.citedreference | Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | W. J. Geary, Coord. Chem. Rev. 1971, 7, 81 – 122; | |
dc.identifier.citedreference | P. V. Rysselberghe, R. M. Fristrom, J. Am. Chem. Soc. 1945, 67, 680 – 682. | |
dc.identifier.citedreference | Several low-energy conformers are also present, including Conf. 1 ( ϕ Cu 2 O 2: 118°), which is predicted to display weak anti-ferromagnetic coupling. See the Supporting Information for details. | |
dc.identifier.citedreference | Y.-M. Lee, S. Bang, H. Yoon, S. H. Bae, S. Hong, K.-B. Cho, R. Sarangi, S. Fukuzumi, W. Nam, Chem. Eur. J. 2015, 21, 10676 – 10680. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Hong, F. F. Pfaff, E. Kwon, Y. Wang, M.-S. Seo, E. Bill, K. Ray, W. Nam, Angew. Chem. Int. Ed. 2014, 53, 10403 – 10407; Angew. Chem. 2014, 126, 10571 – 10575; | |
dc.identifier.citedreference | M. Sankaralingam, Y.-M. Lee, Y. Pineda-Galvan, D. G. Karmalkar, M. S. Seo, S. H. Jeon, Y. Pushkar, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2019, 141, 1324 – 1336. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | J. Suh, Acc. Chem. Res. 1992, 25, 273 – 279; | |
dc.identifier.citedreference | D. E. Wilcox, Chem. Rev. 1996, 96, 2435 – 2458; | |
dc.identifier.citedreference | E. L. Hegg, J. N. Burstyn, Coord. Chem. Rev. 1998, 173, 133 – 165; | |
dc.identifier.citedreference | S. Lim, S. J. Franklin, Cell. Mol. Life Sci. 2004, 61, 2184 – 2188; | |
dc.identifier.citedreference | M. Leopoldini, N. Russo, M. Toscano, Chem. Eur. J. 2007, 13, 2109 – 2117; | |
dc.identifier.citedreference | J. A. Bogart, A. J. Lewis, E. J. Schelter, Chem. Eur. J. 2015, 21, 1743 – 1748; | |
dc.identifier.citedreference | H. Lumpe, A. Pol, H. J. M. Op den Camp, L. J. Daumann, Dalton Trans. 2018, 47, 10463 – 10472; | |
dc.identifier.citedreference | J. A. Cotruvo, E. R. Featherston, J. A. Mattocks, J. V. Ho, T. N. Laremore, J. Am. Chem. Soc. 2018, 140, 15056 – 15061; | |
dc.identifier.citedreference | M. Prejanò, N. Russo, T. Marino, Chem. Eur. J. 2020, 26, 11334 – 11339. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | K. A. Magnus, H. Ton-That, J. E. Carpenter, Chem. Rev. 1994, 94, 727 – 735. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, M. Sugiyama, J. Biol. Chem. 2006, 281, 8981 – 8990; | |
dc.identifier.citedreference | W. T. Ismaya, H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers, B. W. Dijkstra, Biochemistry 2011, 50, 5477 – 5486. | |
dc.identifier.citedreference | C. Gerdemann, C. Eicken, B. Krebs, Acc. Chem. Res. 2002, 35, 183 – 191. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | R. Balasubramanian, A. C. Rosenzweig, Acc. Chem. Res. 2007, 40, 573 – 580; | |
dc.identifier.citedreference | S. I. Chan, S. S. F. Yu, Acc. Chem. Res. 2008, 41, 969 – 979; | |
dc.identifier.citedreference | M. O. Ross, F. MacMillan, J. Wang, A. Nisthal, T. J. Lawton, B. D. Olafson, S. L. Mayo, A. C. Rosenzweig, B. M. Hoffman, Science 2019, 364, 566 – 570; | |
dc.identifier.citedreference | Z. Halime, M. T. Kieber-Emmons, M. F. Qayyum, B. Mondal, T. Gandhi, S. C. Puiu, E. E. ChufáN, A. A. N. Sarjeant, K. O. Hodgson, B. Hedman, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2010, 49, 3629 – 3645; | |
dc.identifier.citedreference | K. E. Dalle, T. Gruene, S. Dechert, S. Demeshko, F. Meyer, J. Am. Chem. Soc. 2014, 136, 7428 – 7434. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | L. Que, W. B. Tolman, Nature 2008, 455, 333 – 340; | |
dc.identifier.citedreference | A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062 – 11087; | |
dc.identifier.citedreference | S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234 – 6458; | |
dc.identifier.citedreference | L. Q. Hatcher, K. D. Karlin, J. Biol. Inorg. Chem. 2004, 9, 669 – 683; | |
dc.identifier.citedreference | A. M. Kirillov, M. N. Kopylovich, M. V. Kirillova, M. Haukka, M. F. C. G. da Silva, A. J. L. Pombeiro, Angew. Chem. Int. Ed. 2005, 44, 4345 – 4349; | |
dc.identifier.citedreference | A. E. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas, S. S. Stahl, J. Am. Chem. Soc. 2010, 132, 12068 – 12073; | |
dc.identifier.citedreference | M. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem. Int. Ed. 2010, 49, 6438 – 6442; | |
dc.identifier.citedreference | A. M. Kirillov, M. V. Kirillova, A. J. L. Pombeiro, In Advances in Inorganic Chemistry, Advances in Inorganic Chemistry Elsevier, Amsterdam, 2013, pp. 1 – 31; | |
dc.identifier.citedreference | A. Hoffmann, C. Citek, S. Binder, A. Goos, M. Rübhausen, O. Troeppner, I. Ivanović-Burmazović, E. C. Wasinger, T. D. P. Stack, S. Herres-Pawlis, Angew. Chem. Int. Ed. 2013, 52, 5398 – 5401; | |
dc.identifier.citedreference | B. Xu, J.-P. Lumb, B. A. Arndtsen, Angew. Chem. Int. Ed. 2015, 54, 4208 – 4211; | |
dc.identifier.citedreference | E. L. Presti, E. Monzani, L. Santagostini, L. Casella, Inorg. Chim. Acta 2018, 481, 47 – 55; | |
dc.identifier.citedreference | L. Ciano, G. J. Davies, W. B. Tolman, P. H. Walton, Nat. Catal. 2018, 1, 571 – 577; | |
dc.identifier.citedreference | S. C. Bete, C. Würtele, M. Otte, Chem. Commun. 2019, 55, 4427 – 4430. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs, R. A. Schoonheydt, J. Am. Chem. Soc. 2005, 127, 1394 – 1395; | |
dc.identifier.citedreference | P. Vanelderen, R. G. Hadt, P. J. Smeets, E. I. Solomon, R. A. Schoonheydt, B. F. Sels, J. Catal. 2011, 284, 157 – 164; | |
dc.identifier.citedreference | S. Grundner, M. A. C. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. M. Hensen, A. Jentys, M. Sanchez-Sanchez, J. A. Lercher, Nat. Commun. 2015, 6, 7546; | |
dc.identifier.citedreference | N. A. Carmo Dos Santos, F. Lorandi, E. Badetti, K. Wurst, A. A. Isse, A. Gennaro, G. Licini, C. Zonta, Polymer 2017, 128, 169 – 176; | |
dc.identifier.citedreference | J. Baek, B. Rungtaweevoranit, X. Pei, M. Park, S. C. Fakra, Y.-S. Liu, R. Matheu, S. A. Alshmimri, S. Alshehri, C. A. Trickett, G. A. Somorjai, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 18208 – 18216; | |
dc.identifier.citedreference | S. Thanneeru, N. Milazzo, A. Lopes, Z. Wei, A. M. Angeles-Boza, J. He, J. Am. Chem. Soc. 2019, 141, 4252 – 4256; | |
dc.identifier.citedreference | J. Zheng, J. Ye, M. A. Ortuño, J. L. Fulton, O. Y. Gutiérrez, D. M. Camaioni, R. K. Motkuri, Z. Li, T. E. Webber, B. L. Mehdi, N. D. Browning, R. L. Penn, O. K. Farha, J. T. Hupp, D. G. Truhlar, C. J. Cramer, J. A. Lercher, J. Am. Chem. Soc. 2019, 141, 9292 – 9304; | |
dc.identifier.citedreference | F. De Bon, C. M. R. Abreu, A. C. Serra, A. Gennaro, J. F. J. Coelho, A. A. Isse, Macromol. Rapid Commun. 2020, 2000532; | |
dc.identifier.citedreference | X. Feng, Y. Song, J. S. Chen, Z. Xu, S. J. Dunn, W. Lin, J. Am. Chem. Soc. 2021, 143, 1107 – 1118. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | M. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev. 2018, 118, 2340 – 2391; | |
dc.identifier.citedreference | M. S. Thorum, J. Yadav, A. A. Gewirth, Angew. Chem. Int. Ed. 2009, 48, 165 – 167; | |
dc.identifier.citedreference | M. A. Thorseth, C. S. Letko, T. B. Rauchfuss, A. A. Gewirth, Inorg. Chem. 2011, 50, 6158 – 6162; | |
dc.identifier.citedreference | C. C. L. McCrory, A. Devadoss, X. Ottenwaelder, R. D. Lowe, T. D. P. Stack, C. E. D. Chidsey, J. Am. Chem. Soc. 2011, 133, 3696 – 3699; | |
dc.identifier.citedreference | S. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498 – 502; | |
dc.identifier.citedreference | S. Fukuzumi, L. Tahsini, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, J. Am. Chem. Soc. 2012, 134, 7025 – 7035; | |
dc.identifier.citedreference | M. A. Thorseth, C. E. Tornow, E. C. M. Tse, A. A. Gewirth, Coord. Chem. Rev. 2013, 257, 130 – 139; | |
dc.identifier.citedreference | M. A. Thorseth, C. S. Letko, E. C. M. Tse, T. B. Rauchfuss, A. A. Gewirth, Inorg. Chem. 2013, 52, 628 – 634; | |
dc.identifier.citedreference | D. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2825 – 2834; | |
dc.identifier.citedreference | D. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 4018 – 4026; | |
dc.identifier.citedreference | B. M. T. Lam, J. A. Halfen, V. G. Young, J. R. Hagadorn, P. L. Holland, A. Lledós, L. Cucurull-Sánchez, J. J. Novoa, S. Alvarez, W. B. Tolman, Inorg. Chem. 2000, 39, 4059 – 4072; | |
dc.identifier.citedreference | Z. Hu, G. N. George, S. M. Gorun, Inorg. Chem. 2001, 40, 4812 – 4813; | |
dc.identifier.citedreference | M. Kodera, Y. Kajita, Y. Tachi, K. Katayama, K. Kano, S. Hirota, S. Fujinami, M. Suzuki, Angew. Chem. Int. Ed. 2004, 43, 334 – 337; | |
dc.identifier.citedreference | G. J. Karahalis, A. Thangavel, B. Chica, J. Bacsa, R. B. Dyer, C. C. Scarborough, Inorg. Chem. 2016, 55, 1102 – 1107; | |
dc.identifier.citedreference | S. Zhang, H. Fallah, E. J. Gardner, S. Kundu, J. A. Bertke, T. R. Cundari, T. H. Warren, Angew. Chem. Int. Ed. 2016, 55, 9927 – 9931; | |
dc.identifier.citedreference | V. E. Goswami, A. Walli, M. Förster, S. Dechert, S. Demeshko, M. C. Holthausen, F. Meyer, Chem. Sci. 2017, 8, 3031 – 3037. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, X. Wang, V. G. Young, C. J. Cramer, L. Que, W. B. Tolman, J. Am. Chem. Soc. 1996, 118, 11555 – 11574; | |
dc.identifier.citedreference | S. Mahapatra, V. G. Young, S. Kaderli, A. D. Zuberbühler, W. B. Tolman, Angew. Chem. Int. Ed. 1997, 36, 130 – 133; | |
dc.identifier.citedreference | V. Mahadevan, Z. Hou, A. P. Cole, D. E. Root, T. K. Lal, E. I. Solomon, T. D. P. Stack, J. Am. Chem. Soc. 1997, 119, 11996 – 11997; | |
dc.identifier.citedreference | H. Hayashi, S. Fujinami, S. Nagatomo, S. Ogo, M. Suzuki, A. Uehara, Y. Watanabe, T. Kitagawa, J. Am. Chem. Soc. 2000, 122, 2124 – 2125; | |
dc.identifier.citedreference | B. F. Straub, F. Rominger, P. Hofmann, Chem. Commun. 2000, 1611 – 1612; | |
dc.identifier.citedreference | N. W. Aboelella, E. A. Lewis, A. M. Reynolds, W. W. Brennessel, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2002, 124, 10660 – 10661; | |
dc.identifier.citedreference | A. P. Cole, V. Mahadevan, L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Inorg. Chem. 2005, 44, 7345 – 7364; | |
dc.identifier.citedreference | L. Zhou, D. Powell, K. M. Nicholas, Inorg. Chem. 2006, 45, 3840 – 3842; | |
dc.identifier.citedreference | R. M. Ramadan, S. M. Shohayeb, R. G. Mohamed, Inorg. Nano-Met. Chem. 2013, 43, 609 – 616; | |
dc.identifier.citedreference | A. Walli, S. Dechert, M. Bauer, S. Demeshko, F. Meyer, Eur. J. Inorg. Chem. 2014, 4660 – 4676. | |
dc.identifier.citedreference | N. Kindermann, E. Bill, S. Dechert, S. Demeshko, E. J. Reijerse, F. Meyer, Angew. Chem. Int. Ed. 2015, 54, 1738 – 1743. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | E. I. Solomon, P. Chen, M. Metz, S.-K. Lee, A. E. Palmer, Angew. Chem. Int. Ed. 2001, 40, 4570 – 4590; | |
dc.identifier.citedreference | M. Metz, E. I. Solomon, J. Am. Chem. Soc. 2001, 123, 4938 – 4950. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | R. D. Jones, D. A. Summerville, F. Basolo, Chem. Rev. 1979, 79, 139 – 179; | |
dc.identifier.citedreference | E. C. Niederhoffer, J. H. Timmons, A. E. Martell, Chem. Rev. 1984, 84, 137 – 203; | |
dc.identifier.citedreference | E. I. Solomon, F. Tuczek, D. E. Root, C. A. Brown, Chem. Rev. 1994, 94, 827 – 856; | |
dc.identifier.citedreference | M. Calligaris, G. Nardin, L. Randaccio, A. Ripamonti, J. Chem. Soc. A 1970, 1069 – 1074; | |
dc.identifier.citedreference | A. L. Gavrilova, C. J. Qin, R. D. Sommer, A. L. Rheingold, B. Bosnich, J. Am. Chem. Soc. 2002, 124, 1714 – 1722; | |
dc.identifier.citedreference | G. Givaja, M. Volpe, M. A. Edwards, A. J. Blake, C. Wilson, M. Schröder, J. B. Love, Angew. Chem. Int. Ed. 2007, 46, 584 – 586; | |
dc.identifier.citedreference | P. D. Southon, D. J. Price, P. K. Nielsen, C. J. McKenzie, C. J. Kepert, J. Am. Chem. Soc. 2011, 133, 10885 – 10891; | |
dc.identifier.citedreference | S. Fukuzumi, S. Mandal, K. Mase, K. Ohkubo, H. Park, J. Benet-Buchholz, W. Nam, A. Llobet, J. Am. Chem. Soc. 2012, 134, 9906 – 9909; | |
dc.identifier.citedreference | M. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058 – 3062; | |
dc.identifier.citedreference | Y. Dong, S. Yan, V. G. Young, Jr., L. Que, Jr., Angew. Chem. Int. Ed. 1996, 35, 618 – 620; | |
dc.identifier.citedreference | T. Ookubo, H. Sugimoto, T. Nagayama, H. Masuda, T. Sato, K. Tanaka, Y. Maeda, H. Ōkawa, Y. Hayashi, A. Uehara, M. Suzuki, J. Am. Chem. Soc. 1996, 118, 701 – 702; | |
dc.identifier.citedreference | K. Kim, S. J. Lippard, J. Am. Chem. Soc. 1996, 118, 4914 – 4915; | |
dc.identifier.citedreference | X. Zhang, H. Furutachi, S. Fujinami, S. Nagatomo, Y. Maeda, Y. Watanabe, T. Kitagawa, M. Suzuki, J. Am. Chem. Soc. 2005, 127, 826 – 827; | |
dc.identifier.citedreference | M. Sekino, H. Furutachi, R. Tojo, A. Hishi, H. Kajikawa, T. Suzuki, K. Suzuki, S. Fujinami, S. Akine, Y. Sakata, T. Ohta, S. Hayami, M. Suzuki, Chem. Commun. 2017, 53, 8838 – 8841. | |
dc.identifier.citedreference | A. J. Jasniewski, L. Que, Chem. Rev. 2018, 118, 2554 – 2592. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Fukuzumi, Roles of Metal Ions in Controlling Bioinspired Electron-Transfer Systems. Metal Ion-Coupled Electron Transfer. In Progress in Inorganic Chemistry, John Wiley & Sons, Ltd: 2009, pp 49–154. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Fukuzumi, K. Ohkubo, Chem. Eur. J. 2000, 6, 4532 – 4535; | |
dc.identifier.citedreference | M. Mizuno, K. Honda, J. Cho, H. Furutachi, T. Tosha, T. Matsumoto, S. Fujinami, T. Kitagawa, M. Suzuki, Angew. Chem. Int. Ed. 2006, 45, 6911 – 6914; Angew. Chem. 2006, 118, 7065 – 7068; | |
dc.identifier.citedreference | C. W. Koo, A. C. Rosenzweig, Chem. Soc. Rev. 2021, 50, 3424 – 3436. | |
dc.identifier.citedreference | Y. J. Park, J. W. Ziller, A. S. Borovik, J. Am. Chem. Soc. 2011, 133, 9258 – 9261; | |
dc.identifier.citedreference | Y. J. Park, S. A. Cook, N. S. Sickerman, Y. Sano, J. W. Ziller, A. S. Borovik, Chem. Sci. 2013, 4, 717 – 726; | |
dc.identifier.citedreference | J. T. Henthorn, T. Agapie, Angew. Chem. Int. Ed. 2014, 53, 12893 – 12896; | |
dc.identifier.citedreference | F. Schax, S. Suhr, E. Bill, B. Braun, C. Herwig, C. Limberg, Angew. Chem. Int. Ed. 2015, 54, 1352 – 1356; | |
dc.identifier.citedreference | S. Hong, Y.-M. Lee, M. Sankaralingam, A. K. Vardhaman, Y. J. Park, K.-B. Cho, T. Ogura, R. Sarangi, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2016, 138, 8523 – 8532; | |
dc.identifier.citedreference | T. Devi, Y.-M. Lee, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2019, 142, 365 – 372; | |
dc.identifier.citedreference | M.-L. Wind, S. Hoof, C. Herwig, B. Braun-Cula, C. Limberg, Chem. Eur. J. 2019, 25, 5743 – 5750; | |
dc.identifier.citedreference | M.-L. Wind, S. Hoof, B. Braun-Cula, C. Herwig, C. Limberg, Inorg. Chem. 2020, 59, 6866 – 6875. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | Y.-M. Lee, S. Bang, Y. M. Kim, J. Cho, S. Hong, T. Nomura, T. Ogura, O. Troeppner, I. Ivanović-Burmazović, R. Sarangi, S. Fukuzumi, W. Nam, Chem. Sci. 2013, 4, 3917; | |
dc.identifier.citedreference | S. Bang, Y.-M. Lee, S. Hong, K.-B. Cho, Y. Nishida, M. S. Seo, R. Sarangi, S. Fukuzumi, W. Nam, Nat. Chem. 2014, 6, 934 – 940; | |
dc.identifier.citedreference | S. H. Bae, Y.-M. Lee, S. Fukuzumi, W. Nam, Angew. Chem. Int. Ed. 2017, 56, 801 – 805; | |
dc.identifier.citedreference | M.-L. Wind, S. Hoof, B. Braun-Cula, C. Herwig, C. Limberg, J. Am. Chem. Soc. 2019, 141, 14068 – 14072; | |
dc.identifier.citedreference | F. Li, K. M. Van Heuvelen, K. K. Meier, E. Münck, L. Que, J. Am. Chem. Soc. 2013, 135, 10198 – 10201; | |
dc.identifier.citedreference | S. Banerjee, A. Draksharapu, P. M. Crossland, R. Fan, Y. Guo, M. Swart, L. Que, J. Am. Chem. Soc. 2020, 142, 4285 – 4297. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Kakuda, C. J. Rolle, K. Ohkubo, M. A. Siegler, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2015, 137, 3330 – 3337; | |
dc.identifier.citedreference | I. Garcia-Bosch, R. E. Cowley, D. E. Díaz, R. L. Peterson, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2017, 139, 3186 – 3195. | |
dc.identifier.citedreference | S. Yamaguchi, A. Wada, Y. Funahashi, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Eur. J. Inorg. Chem. 2003, 4378 – 4386. | |
dc.identifier.citedreference | B. Kim, S. Kim, T. Ohta, J. Cho, Inorg. Chem. 2020, 59, 9938 – 9943. | |
dc.identifier.citedreference | F. Li, K. K. Meier, M. A. Cranswick, M. Chakrabarti, K. M. Van Heuvelen, E. Münck, L. Que, J. Am. Chem. Soc. 2011, 133, 7256 – 7259. | |
dc.identifier.citedreference | P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305 – 1323. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | S. Kakuda, R. L. Peterson, K. Ohkubo, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 6513 – 6522; | |
dc.identifier.citedreference | T. Fujii, A. Naito, S. Yamaguchi, A. Wada, Y. Funahashi, K. Jitsukawa, S. Nagatomo, T. Kitagawa, H. Masuda, Chem. Commun. 2003, 2700 – 2701; | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.