Show simple item record

Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores

dc.contributor.authorVargo, Natasha P.
dc.contributor.authorHarland, Jill B.
dc.contributor.authorMusselman, Bradley W.
dc.contributor.authorLehnert, Nicolai
dc.contributor.authorErtem, Mehmed Z.
dc.contributor.authorRobinson, Jerome R.
dc.date.accessioned2021-09-08T14:35:12Z
dc.date.available2022-10-08 10:35:10en
dc.date.available2021-09-08T14:35:12Z
dc.date.issued2021-09-01
dc.identifier.citationVargo, Natasha P.; Harland, Jill B.; Musselman, Bradley W.; Lehnert, Nicolai; Ertem, Mehmed Z.; Robinson, Jerome R. (2021). "Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores." Angewandte Chemie International Edition 60(36): 19836-19842.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/169279
dc.description.abstractCoupled dinuclear copper oxygen cores (Cu2O2) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ‐1,2‐cis peroxido dicopper cores (CP) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic CP cores in biological and synthetic systems, the properties and reactivity of CP Cu2O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ‐1,2‐trans peroxido (TP) and CP dicopper cores. CaII mediates this process by reversible binding at the Cu2O2 core, highlighting the unique capability for metal‐ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.Calcium‐ion binding mediates the reversible interconversion of the prototypical trans‐peroxido Cu2O2 core (TP) to the rare and biologically relevant cis‐peroxido Cu2O2 core (CP). This provides new opportunities to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.othercalcium
dc.subject.othercopper
dc.subject.otherheterometallic complexes
dc.subject.otherperoxides
dc.subject.otherbioinorganic chemistry
dc.titleCalcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169279/1/anie202105421-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169279/2/anie202105421_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/169279/3/anie202105421.pdf
dc.identifier.doi10.1002/anie.202105421
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceS. Yao, Y. Xiong, M. Vogt, H. Grützmacher, C. Herwig, C. Limberg, M. Driess, Angew. Chem. Int. Ed. 2009, 48, 8107 – 8110;
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Decker, T. Schweikardt, D. Nillius, U. Salzbrunn, E. Jaenicke, F. Tuczek, Gene 2007, 398, 183 – 191;
dc.identifier.citedreferenceJ. W. Ginsbach, M. T. Kieber-Emmons, R. Nomoto, A. Noguchi, Y. Ohnishi, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2012, 109, 10793 – 10797;
dc.identifier.citedreferenceE. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 2014, 114, 3659 – 3853.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013 – 1046;
dc.identifier.citedreferenceE. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047 – 1076;
dc.identifier.citedreferenceC. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth, G. M. Yee, W. B. Tolman, Chem. Rev. 2017, 117, 2059 – 2107.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Kitajima, K. Fujisawa, Y. Morooka, K. Toriumi, J. Am. Chem. Soc. 1989, 111, 8975 – 8976;
dc.identifier.citedreferenceN. Kitajima, K. Fujisawa, C. Fujimoto, Y. Morooka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc. 1992, 114, 1277 – 1291;
dc.identifier.citedreferenceR. R. Jacobson, Z. Tyeklar, A. Farooq, K. D. Karlin, S. Liu, J. Zubieta, J. Am. Chem. Soc. 1988, 110, 3690 – 3692;
dc.identifier.citedreferenceK. D. Karlin, Z. Tyeklár, A. Farooq, R. R. Jacobson, E. Sinn, D. W. Lee, J. E. Bradshaw, L. J. Wilson, Inorg. Chim. Acta 1991, 182, 1 – 3;
dc.identifier.citedreferenceJ. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, L. Que, A. D. Zuberbuhler, W. B. Tolman, Science 1996, 271, 1397 – 1400;
dc.identifier.citedreferenceM. J. Henson, V. Mahadevan, T. D. P. Stack, E. I. Solomon, Inorg. Chem. 2001, 40, 5068 – 5069;
dc.identifier.citedreferenceB. A. Jazdzewski, A. M. Reynolds, P. L. Holland, V. G. Young, S. Kaderli, A. D. Zuberbühler, W. B. Tolman, J. Biol. Inorg. Chem. 2003, 8, 381 – 393;
dc.identifier.citedreferenceL. M. Mirica, D. J. Rudd, M. A. Vance, E. I. Solomon, K. O. Hodgson, B. Hedman, T. D. P. Stack, J. Am. Chem. Soc. 2006, 128, 2654 – 2665;
dc.identifier.citedreferenceM. Asahi, S.-i. Yamazaki, S. Itoh, T. Ioroi, Dalton Trans. 2014, 43, 10705 – 10709;
dc.identifier.citedreferenceK. Ray, F. Heims, M. Schwalbe, W. Nam, Curr. Opin. Chem. Biol. 2015, 25, 159 – 171;
dc.identifier.citedreferenceX.-J. Su, M. Gao, L. Jiao, R.-Z. Liao, P. E. M. Siegbahn, J.-P. Cheng, M.-T. Zhang, Angew. Chem. Int. Ed. 2015, 54, 4909 – 4914;
dc.identifier.citedreferenceR.-J. Xiang, H.-Y. Wang, Z.-J. Xin, C.-B. Li, Y.-X. Lu, X.-W. Gao, H.-M. Sun, R. Cao, Chem. Eur. J. 2016, 22, 1602 – 1607;
dc.identifier.citedreferenceM. Asahi, S.-i. Yamazaki, S. Itoh, T. Ioroi, Electrochim. Acta 2016, 211, 193 – 198;
dc.identifier.citedreferenceM. Langerman, D. G. H. Hetterscheid, Angew. Chem. Int. Ed. 2019, 58, 12974 – 12978;
dc.identifier.citedreferenceN. W. G. Smits, B. van Dijk, I. de Bruin, S. L. T. Groeneveld, M. A. Siegler, D. G. H. Hetterscheid, Inorg. Chem. 2020, 59, 16398 – 16409.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. Tyeklar, R. R. Jacobson, N. Wei, N. N. Murthy, J. Zubieta, K. D. Karlin, J. Am. Chem. Soc. 1993, 115, 2677 – 2689;
dc.identifier.citedreferenceK. Komiyama, H. Furutachi, S. Nagatomo, A. Hashimoto, H. Hayashi, S. Fujinami, M. Suzuki, T. Kitagawa, Bull. Chem. Soc. Jpn. 2004, 77, 59 – 72;
dc.identifier.citedreferenceC. Würtele, O. Sander, V. Lutz, T. Waitz, F. Tuczek, S. Schindler, J. Am. Chem. Soc. 2009, 131, 7544 – 7545;
dc.identifier.citedreferenceT. Hoppe, S. Schaub, J. Becker, C. Würtele, S. Schindler, Angew. Chem. Int. Ed. 2013, 52, 870 – 873;
dc.identifier.citedreferenceE. W. Dahl, H. T. Dong, N. K. Szymczak, Chem. Commun. 2018, 54, 892 – 895.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Kodera, K. Katayama, Y. Tachi, K. Kano, S. Hirota, S. Fujinami, M. Suzuki, J. Am. Chem. Soc. 1999, 121, 11006 – 11007;
dc.identifier.citedreferenceI. Bertini, H. B. Gray, E. I. Stiefel, J. S. Valentine, Biological Inorganic Chemistry: Structure and Reactivity, University Science Books, Sausalito, CA, 2007;
dc.identifier.citedreferenceJ. Yano, V. Yachandra, Chem. Rev. 2014, 114, 4175 – 4205;
dc.identifier.citedreferenceM. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 2015, 517, 99 – 103.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, Y.-M. Lee, W. Nam, Chem. Eur. J. 2015, 21, 17548 – 17559;
dc.identifier.citedreferenceT. Devi, Y.-M. Lee, W. Nam, S. Fukuzumi, Coord. Chem. Rev. 2020, 410, 213219;
dc.identifier.citedreferenceB. Gerey, E. Gouré, J. Fortage, J. Pécaut, M.-N. Collomb, Coord. Chem. Rev. 2016, 319, 1 – 24;
dc.identifier.citedreferenceJ. S. Kanady, E. Y. Tsui, M. W. Day, T. Agapie, Science 2011, 333, 733 – 736;
dc.identifier.citedreferenceE. Y. Tsui, R. Tran, J. Yano, T. Agapie, Nat. Chem. 2013, 5, 293 – 299;
dc.identifier.citedreferenceH. Ohtsu, Y. Shimazaki, A. Odani, O. Yamauchi, W. Mori, S. Itoh, S. Fukuzumi, J. Am. Chem. Soc. 2000, 122, 5733 – 5741;
dc.identifier.citedreferenceL. Li, A. A. Narducci Sarjeant, M. A. Vance, L. N. Zakharov, A. L. Rheingold, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2005, 127, 15360 – 15361;
dc.identifier.citedreferenceS. Teramae, T. Osako, S. Nagatomo, T. Kitagawa, S. Fukuzumi, S. Itoh, J. Inorg. Biochem. 2004, 98, 746 – 757;
dc.identifier.citedreferenceK. Itoh, H. Hayashi, H. Furutachi, T. Matsumoto, S. Nagatomo, T. Tosha, S. Terada, S. Fujinami, M. Suzuki, T. Kitagawa, J. Am. Chem. Soc. 2005, 127, 5212 – 5223;
dc.identifier.citedreferenceG. Battaini, E. Monzani, A. Perotti, C. Para, L. Casella, L. Santagostini, M. Gullotti, R. Dillinger, C. Näther, F. Tuczek, J. Am. Chem. Soc. 2003, 125, 4185 – 4198;
dc.identifier.citedreferenceN. Kindermann, S. Dechert, S. Demeshko, F. Meyer, J. Am. Chem. Soc. 2015, 137, 8002 – 8005.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. D. Karlin, R. W. Cruse, Y. Gultneh, Chem. Commun. 1987, 599 – 600;
dc.identifier.citedreferenceK. D. Karlin, P. Ghosh, R. W. Cruse, A. Farooq, Y. Gultneh, R. R. Jacobson, N. J. Blackburn, R. W. Strange, J. Zubieta, J. Am. Chem. Soc. 1988, 110, 6769 – 6780;
dc.identifier.citedreferenceL. Li, A. A. N. Sarjeant, K. D. Karlin, Inorg. Chem. 2006, 45, 7160 – 7172.
dc.identifier.citedreferenceS. Yamaguchi, A. Wada, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Chem. Lett. 2004, 33, 1556 – 1557.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. F. Evans, J. Chem. Soc. 1959, 2003 – 2005;
dc.identifier.citedreferenceE. M. Schubert, J. Chem. Educ. 1992, 69, 62;
dc.identifier.citedreferenceC. Piguet, J. Chem. Educ. 1997, 74, 815.
dc.identifier.citedreferenceJ. M. Brink, R. A. Rose, R. C. Holz, Inorg. Chem. 1996, 35, 2878 – 2885.
dc.identifier.citedreferenceN. Zhao, A. S. Filatov, J. Xie, E. A. Hill, A. Y. Rogachev, J. S. Anderson, J. Am. Chem. Soc. 2020, 142, 21634 – 21639.
dc.identifier.citedreferenceY. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. J. Geary, Coord. Chem. Rev. 1971, 7, 81 – 122;
dc.identifier.citedreferenceP. V. Rysselberghe, R. M. Fristrom, J. Am. Chem. Soc. 1945, 67, 680 – 682.
dc.identifier.citedreferenceSeveral low-energy conformers are also present, including Conf. 1 ( ϕ Cu 2 O 2: 118°), which is predicted to display weak anti-ferromagnetic coupling. See the Supporting Information for details.
dc.identifier.citedreferenceY.-M. Lee, S. Bang, H. Yoon, S. H. Bae, S. Hong, K.-B. Cho, R. Sarangi, S. Fukuzumi, W. Nam, Chem. Eur. J. 2015, 21, 10676 – 10680.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Hong, F. F. Pfaff, E. Kwon, Y. Wang, M.-S. Seo, E. Bill, K. Ray, W. Nam, Angew. Chem. Int. Ed. 2014, 53, 10403 – 10407; Angew. Chem. 2014, 126, 10571 – 10575;
dc.identifier.citedreferenceM. Sankaralingam, Y.-M. Lee, Y. Pineda-Galvan, D. G. Karmalkar, M. S. Seo, S. H. Jeon, Y. Pushkar, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2019, 141, 1324 – 1336.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Suh, Acc. Chem. Res. 1992, 25, 273 – 279;
dc.identifier.citedreferenceD. E. Wilcox, Chem. Rev. 1996, 96, 2435 – 2458;
dc.identifier.citedreferenceE. L. Hegg, J. N. Burstyn, Coord. Chem. Rev. 1998, 173, 133 – 165;
dc.identifier.citedreferenceS. Lim, S. J. Franklin, Cell. Mol. Life Sci. 2004, 61, 2184 – 2188;
dc.identifier.citedreferenceM. Leopoldini, N. Russo, M. Toscano, Chem. Eur. J. 2007, 13, 2109 – 2117;
dc.identifier.citedreferenceJ. A. Bogart, A. J. Lewis, E. J. Schelter, Chem. Eur. J. 2015, 21, 1743 – 1748;
dc.identifier.citedreferenceH. Lumpe, A. Pol, H. J. M. Op den Camp, L. J. Daumann, Dalton Trans. 2018, 47, 10463 – 10472;
dc.identifier.citedreferenceJ. A. Cotruvo, E. R. Featherston, J. A. Mattocks, J. V. Ho, T. N. Laremore, J. Am. Chem. Soc. 2018, 140, 15056 – 15061;
dc.identifier.citedreferenceM. Prejanò, N. Russo, T. Marino, Chem. Eur. J. 2020, 26, 11334 – 11339.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. A. Magnus, H. Ton-That, J. E. Carpenter, Chem. Rev. 1994, 94, 727 – 735.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, M. Sugiyama, J. Biol. Chem. 2006, 281, 8981 – 8990;
dc.identifier.citedreferenceW. T. Ismaya, H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers, B. W. Dijkstra, Biochemistry 2011, 50, 5477 – 5486.
dc.identifier.citedreferenceC. Gerdemann, C. Eicken, B. Krebs, Acc. Chem. Res. 2002, 35, 183 – 191.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Balasubramanian, A. C. Rosenzweig, Acc. Chem. Res. 2007, 40, 573 – 580;
dc.identifier.citedreferenceS. I. Chan, S. S. F. Yu, Acc. Chem. Res. 2008, 41, 969 – 979;
dc.identifier.citedreferenceM. O. Ross, F. MacMillan, J. Wang, A. Nisthal, T. J. Lawton, B. D. Olafson, S. L. Mayo, A. C. Rosenzweig, B. M. Hoffman, Science 2019, 364, 566 – 570;
dc.identifier.citedreferenceZ. Halime, M. T. Kieber-Emmons, M. F. Qayyum, B. Mondal, T. Gandhi, S. C. Puiu, E. E. ChufáN, A. A. N. Sarjeant, K. O. Hodgson, B. Hedman, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2010, 49, 3629 – 3645;
dc.identifier.citedreferenceK. E. Dalle, T. Gruene, S. Dechert, S. Demeshko, F. Meyer, J. Am. Chem. Soc. 2014, 136, 7428 – 7434.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Que, W. B. Tolman, Nature 2008, 455, 333 – 340;
dc.identifier.citedreferenceA. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062 – 11087;
dc.identifier.citedreferenceS. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234 – 6458;
dc.identifier.citedreferenceL. Q. Hatcher, K. D. Karlin, J. Biol. Inorg. Chem. 2004, 9, 669 – 683;
dc.identifier.citedreferenceA. M. Kirillov, M. N. Kopylovich, M. V. Kirillova, M. Haukka, M. F. C. G. da Silva, A. J. L. Pombeiro, Angew. Chem. Int. Ed. 2005, 44, 4345 – 4349;
dc.identifier.citedreferenceA. E. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas, S. S. Stahl, J. Am. Chem. Soc. 2010, 132, 12068 – 12073;
dc.identifier.citedreferenceM. Rolff, J. Schottenheim, G. Peters, F. Tuczek, Angew. Chem. Int. Ed. 2010, 49, 6438 – 6442;
dc.identifier.citedreferenceA. M. Kirillov, M. V. Kirillova, A. J. L. Pombeiro, In Advances in Inorganic Chemistry, Advances in Inorganic Chemistry Elsevier, Amsterdam, 2013, pp.  1 – 31;
dc.identifier.citedreferenceA. Hoffmann, C. Citek, S. Binder, A. Goos, M. Rübhausen, O. Troeppner, I. Ivanović-Burmazović, E. C. Wasinger, T. D. P. Stack, S. Herres-Pawlis, Angew. Chem. Int. Ed. 2013, 52, 5398 – 5401;
dc.identifier.citedreferenceB. Xu, J.-P. Lumb, B. A. Arndtsen, Angew. Chem. Int. Ed. 2015, 54, 4208 – 4211;
dc.identifier.citedreferenceE. L. Presti, E. Monzani, L. Santagostini, L. Casella, Inorg. Chim. Acta 2018, 481, 47 – 55;
dc.identifier.citedreferenceL. Ciano, G. J. Davies, W. B. Tolman, P. H. Walton, Nat. Catal. 2018, 1, 571 – 577;
dc.identifier.citedreferenceS. C. Bete, C. Würtele, M. Otte, Chem. Commun. 2019, 55, 4427 – 4430.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs, R. A. Schoonheydt, J. Am. Chem. Soc. 2005, 127, 1394 – 1395;
dc.identifier.citedreferenceP. Vanelderen, R. G. Hadt, P. J. Smeets, E. I. Solomon, R. A. Schoonheydt, B. F. Sels, J. Catal. 2011, 284, 157 – 164;
dc.identifier.citedreferenceS. Grundner, M. A. C. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. M. Hensen, A. Jentys, M. Sanchez-Sanchez, J. A. Lercher, Nat. Commun. 2015, 6, 7546;
dc.identifier.citedreferenceN. A. Carmo Dos Santos, F. Lorandi, E. Badetti, K. Wurst, A. A. Isse, A. Gennaro, G. Licini, C. Zonta, Polymer 2017, 128, 169 – 176;
dc.identifier.citedreferenceJ. Baek, B. Rungtaweevoranit, X. Pei, M. Park, S. C. Fakra, Y.-S. Liu, R. Matheu, S. A. Alshmimri, S. Alshehri, C. A. Trickett, G. A. Somorjai, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 18208 – 18216;
dc.identifier.citedreferenceS. Thanneeru, N. Milazzo, A. Lopes, Z. Wei, A. M. Angeles-Boza, J. He, J. Am. Chem. Soc. 2019, 141, 4252 – 4256;
dc.identifier.citedreferenceJ. Zheng, J. Ye, M. A. Ortuño, J. L. Fulton, O. Y. Gutiérrez, D. M. Camaioni, R. K. Motkuri, Z. Li, T. E. Webber, B. L. Mehdi, N. D. Browning, R. L. Penn, O. K. Farha, J. T. Hupp, D. G. Truhlar, C. J. Cramer, J. A. Lercher, J. Am. Chem. Soc. 2019, 141, 9292 – 9304;
dc.identifier.citedreferenceF. De Bon, C. M. R. Abreu, A. C. Serra, A. Gennaro, J. F. J. Coelho, A. A. Isse, Macromol. Rapid Commun. 2020, 2000532;
dc.identifier.citedreferenceX. Feng, Y. Song, J. S. Chen, Z. Xu, S. J. Dunn, W. Lin, J. Am. Chem. Soc. 2021, 143, 1107 – 1118.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev. 2018, 118, 2340 – 2391;
dc.identifier.citedreferenceM. S. Thorum, J. Yadav, A. A. Gewirth, Angew. Chem. Int. Ed. 2009, 48, 165 – 167;
dc.identifier.citedreferenceM. A. Thorseth, C. S. Letko, T. B. Rauchfuss, A. A. Gewirth, Inorg. Chem. 2011, 50, 6158 – 6162;
dc.identifier.citedreferenceC. C. L. McCrory, A. Devadoss, X. Ottenwaelder, R. D. Lowe, T. D. P. Stack, C. E. D. Chidsey, J. Am. Chem. Soc. 2011, 133, 3696 – 3699;
dc.identifier.citedreferenceS. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498 – 502;
dc.identifier.citedreferenceS. Fukuzumi, L. Tahsini, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, J. Am. Chem. Soc. 2012, 134, 7025 – 7035;
dc.identifier.citedreferenceM. A. Thorseth, C. E. Tornow, E. C. M. Tse, A. A. Gewirth, Coord. Chem. Rev. 2013, 257, 130 – 139;
dc.identifier.citedreferenceM. A. Thorseth, C. S. Letko, E. C. M. Tse, T. B. Rauchfuss, A. A. Gewirth, Inorg. Chem. 2013, 52, 628 – 634;
dc.identifier.citedreferenceD. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2825 – 2834;
dc.identifier.citedreferenceD. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 4018 – 4026;
dc.identifier.citedreferenceB. M. T. Lam, J. A. Halfen, V. G. Young, J. R. Hagadorn, P. L. Holland, A. Lledós, L. Cucurull-Sánchez, J. J. Novoa, S. Alvarez, W. B. Tolman, Inorg. Chem. 2000, 39, 4059 – 4072;
dc.identifier.citedreferenceZ. Hu, G. N. George, S. M. Gorun, Inorg. Chem. 2001, 40, 4812 – 4813;
dc.identifier.citedreferenceM. Kodera, Y. Kajita, Y. Tachi, K. Katayama, K. Kano, S. Hirota, S. Fujinami, M. Suzuki, Angew. Chem. Int. Ed. 2004, 43, 334 – 337;
dc.identifier.citedreferenceG. J. Karahalis, A. Thangavel, B. Chica, J. Bacsa, R. B. Dyer, C. C. Scarborough, Inorg. Chem. 2016, 55, 1102 – 1107;
dc.identifier.citedreferenceS. Zhang, H. Fallah, E. J. Gardner, S. Kundu, J. A. Bertke, T. R. Cundari, T. H. Warren, Angew. Chem. Int. Ed. 2016, 55, 9927 – 9931;
dc.identifier.citedreferenceV. E. Goswami, A. Walli, M. Förster, S. Dechert, S. Demeshko, M. C. Holthausen, F. Meyer, Chem. Sci. 2017, 8, 3031 – 3037.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, X. Wang, V. G. Young, C. J. Cramer, L. Que, W. B. Tolman, J. Am. Chem. Soc. 1996, 118, 11555 – 11574;
dc.identifier.citedreferenceS. Mahapatra, V. G. Young, S. Kaderli, A. D. Zuberbühler, W. B. Tolman, Angew. Chem. Int. Ed. 1997, 36, 130 – 133;
dc.identifier.citedreferenceV. Mahadevan, Z. Hou, A. P. Cole, D. E. Root, T. K. Lal, E. I. Solomon, T. D. P. Stack, J. Am. Chem. Soc. 1997, 119, 11996 – 11997;
dc.identifier.citedreferenceH. Hayashi, S. Fujinami, S. Nagatomo, S. Ogo, M. Suzuki, A. Uehara, Y. Watanabe, T. Kitagawa, J. Am. Chem. Soc. 2000, 122, 2124 – 2125;
dc.identifier.citedreferenceB. F. Straub, F. Rominger, P. Hofmann, Chem. Commun. 2000, 1611 – 1612;
dc.identifier.citedreferenceN. W. Aboelella, E. A. Lewis, A. M. Reynolds, W. W. Brennessel, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2002, 124, 10660 – 10661;
dc.identifier.citedreferenceA. P. Cole, V. Mahadevan, L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Inorg. Chem. 2005, 44, 7345 – 7364;
dc.identifier.citedreferenceL. Zhou, D. Powell, K. M. Nicholas, Inorg. Chem. 2006, 45, 3840 – 3842;
dc.identifier.citedreferenceR. M. Ramadan, S. M. Shohayeb, R. G. Mohamed, Inorg. Nano-Met. Chem. 2013, 43, 609 – 616;
dc.identifier.citedreferenceA. Walli, S. Dechert, M. Bauer, S. Demeshko, F. Meyer, Eur. J. Inorg. Chem. 2014, 4660 – 4676.
dc.identifier.citedreferenceN. Kindermann, E. Bill, S. Dechert, S. Demeshko, E. J. Reijerse, F. Meyer, Angew. Chem. Int. Ed. 2015, 54, 1738 – 1743.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. I. Solomon, P. Chen, M. Metz, S.-K. Lee, A. E. Palmer, Angew. Chem. Int. Ed. 2001, 40, 4570 – 4590;
dc.identifier.citedreferenceM. Metz, E. I. Solomon, J. Am. Chem. Soc. 2001, 123, 4938 – 4950.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. D. Jones, D. A. Summerville, F. Basolo, Chem. Rev. 1979, 79, 139 – 179;
dc.identifier.citedreferenceE. C. Niederhoffer, J. H. Timmons, A. E. Martell, Chem. Rev. 1984, 84, 137 – 203;
dc.identifier.citedreferenceE. I. Solomon, F. Tuczek, D. E. Root, C. A. Brown, Chem. Rev. 1994, 94, 827 – 856;
dc.identifier.citedreferenceM. Calligaris, G. Nardin, L. Randaccio, A. Ripamonti, J. Chem. Soc. A 1970, 1069 – 1074;
dc.identifier.citedreferenceA. L. Gavrilova, C. J. Qin, R. D. Sommer, A. L. Rheingold, B. Bosnich, J. Am. Chem. Soc. 2002, 124, 1714 – 1722;
dc.identifier.citedreferenceG. Givaja, M. Volpe, M. A. Edwards, A. J. Blake, C. Wilson, M. Schröder, J. B. Love, Angew. Chem. Int. Ed. 2007, 46, 584 – 586;
dc.identifier.citedreferenceP. D. Southon, D. J. Price, P. K. Nielsen, C. J. McKenzie, C. J. Kepert, J. Am. Chem. Soc. 2011, 133, 10885 – 10891;
dc.identifier.citedreferenceS. Fukuzumi, S. Mandal, K. Mase, K. Ohkubo, H. Park, J. Benet-Buchholz, W. Nam, A. Llobet, J. Am. Chem. Soc. 2012, 134, 9906 – 9909;
dc.identifier.citedreferenceM. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058 – 3062;
dc.identifier.citedreferenceY. Dong, S. Yan, V. G. Young,  Jr., L. Que,  Jr., Angew. Chem. Int. Ed. 1996, 35, 618 – 620;
dc.identifier.citedreferenceT. Ookubo, H. Sugimoto, T. Nagayama, H. Masuda, T. Sato, K. Tanaka, Y. Maeda, H. Ōkawa, Y. Hayashi, A. Uehara, M. Suzuki, J. Am. Chem. Soc. 1996, 118, 701 – 702;
dc.identifier.citedreferenceK. Kim, S. J. Lippard, J. Am. Chem. Soc. 1996, 118, 4914 – 4915;
dc.identifier.citedreferenceX. Zhang, H. Furutachi, S. Fujinami, S. Nagatomo, Y. Maeda, Y. Watanabe, T. Kitagawa, M. Suzuki, J. Am. Chem. Soc. 2005, 127, 826 – 827;
dc.identifier.citedreferenceM. Sekino, H. Furutachi, R. Tojo, A. Hishi, H. Kajikawa, T. Suzuki, K. Suzuki, S. Fujinami, S. Akine, Y. Sakata, T. Ohta, S. Hayami, M. Suzuki, Chem. Commun. 2017, 53, 8838 – 8841.
dc.identifier.citedreferenceA. J. Jasniewski, L. Que, Chem. Rev. 2018, 118, 2554 – 2592.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Fukuzumi, Roles of Metal Ions in Controlling Bioinspired Electron-Transfer Systems. Metal Ion-Coupled Electron Transfer. In Progress in Inorganic Chemistry, John Wiley & Sons, Ltd: 2009, pp 49–154.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Fukuzumi, K. Ohkubo, Chem. Eur. J. 2000, 6, 4532 – 4535;
dc.identifier.citedreferenceM. Mizuno, K. Honda, J. Cho, H. Furutachi, T. Tosha, T. Matsumoto, S. Fujinami, T. Kitagawa, M. Suzuki, Angew. Chem. Int. Ed. 2006, 45, 6911 – 6914; Angew. Chem. 2006, 118, 7065 – 7068;
dc.identifier.citedreferenceC. W. Koo, A. C. Rosenzweig, Chem. Soc. Rev. 2021, 50, 3424 – 3436.
dc.identifier.citedreferenceY. J. Park, J. W. Ziller, A. S. Borovik, J. Am. Chem. Soc. 2011, 133, 9258 – 9261;
dc.identifier.citedreferenceY. J. Park, S. A. Cook, N. S. Sickerman, Y. Sano, J. W. Ziller, A. S. Borovik, Chem. Sci. 2013, 4, 717 – 726;
dc.identifier.citedreferenceJ. T. Henthorn, T. Agapie, Angew. Chem. Int. Ed. 2014, 53, 12893 – 12896;
dc.identifier.citedreferenceF. Schax, S. Suhr, E. Bill, B. Braun, C. Herwig, C. Limberg, Angew. Chem. Int. Ed. 2015, 54, 1352 – 1356;
dc.identifier.citedreferenceS. Hong, Y.-M. Lee, M. Sankaralingam, A. K. Vardhaman, Y. J. Park, K.-B. Cho, T. Ogura, R. Sarangi, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2016, 138, 8523 – 8532;
dc.identifier.citedreferenceT. Devi, Y.-M. Lee, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2019, 142, 365 – 372;
dc.identifier.citedreferenceM.-L. Wind, S. Hoof, C. Herwig, B. Braun-Cula, C. Limberg, Chem. Eur. J. 2019, 25, 5743 – 5750;
dc.identifier.citedreferenceM.-L. Wind, S. Hoof, B. Braun-Cula, C. Herwig, C. Limberg, Inorg. Chem. 2020, 59, 6866 – 6875.
dc.identifier.citedreference 
dc.identifier.citedreferenceY.-M. Lee, S. Bang, Y. M. Kim, J. Cho, S. Hong, T. Nomura, T. Ogura, O. Troeppner, I. Ivanović-Burmazović, R. Sarangi, S. Fukuzumi, W. Nam, Chem. Sci. 2013, 4, 3917;
dc.identifier.citedreferenceS. Bang, Y.-M. Lee, S. Hong, K.-B. Cho, Y. Nishida, M. S. Seo, R. Sarangi, S. Fukuzumi, W. Nam, Nat. Chem. 2014, 6, 934 – 940;
dc.identifier.citedreferenceS. H. Bae, Y.-M. Lee, S. Fukuzumi, W. Nam, Angew. Chem. Int. Ed. 2017, 56, 801 – 805;
dc.identifier.citedreferenceM.-L. Wind, S. Hoof, B. Braun-Cula, C. Herwig, C. Limberg, J. Am. Chem. Soc. 2019, 141, 14068 – 14072;
dc.identifier.citedreferenceF. Li, K. M. Van Heuvelen, K. K. Meier, E. Münck, L. Que, J. Am. Chem. Soc. 2013, 135, 10198 – 10201;
dc.identifier.citedreferenceS. Banerjee, A. Draksharapu, P. M. Crossland, R. Fan, Y. Guo, M. Swart, L. Que, J. Am. Chem. Soc. 2020, 142, 4285 – 4297.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Kakuda, C. J. Rolle, K. Ohkubo, M. A. Siegler, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2015, 137, 3330 – 3337;
dc.identifier.citedreferenceI. Garcia-Bosch, R. E. Cowley, D. E. Díaz, R. L. Peterson, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2017, 139, 3186 – 3195.
dc.identifier.citedreferenceS. Yamaguchi, A. Wada, Y. Funahashi, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Eur. J. Inorg. Chem. 2003, 4378 – 4386.
dc.identifier.citedreferenceB. Kim, S. Kim, T. Ohta, J. Cho, Inorg. Chem. 2020, 59, 9938 – 9943.
dc.identifier.citedreferenceF. Li, K. K. Meier, M. A. Cranswick, M. Chakrabarti, K. M. Van Heuvelen, E. Münck, L. Que, J. Am. Chem. Soc. 2011, 133, 7256 – 7259.
dc.identifier.citedreferenceP. Thordarson, Chem. Soc. Rev. 2011, 40, 1305 – 1323.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Kakuda, R. L. Peterson, K. Ohkubo, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 6513 – 6522;
dc.identifier.citedreferenceT. Fujii, A. Naito, S. Yamaguchi, A. Wada, Y. Funahashi, K. Jitsukawa, S. Nagatomo, T. Kitagawa, H. Masuda, Chem. Commun. 2003, 2700 – 2701;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.