Show simple item record

Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models

dc.contributor.authorDaher, Houraa
dc.contributor.authorArbic, Brian K.
dc.contributor.authorWilliams, James G.
dc.contributor.authorAnsong, Joseph K.
dc.contributor.authorBoggs, Dale H.
dc.contributor.authorMüller, Malte
dc.contributor.authorSchindelegger, Michael
dc.contributor.authorAustermann, Jacqueline
dc.contributor.authorCornuelle, Bruce D.
dc.contributor.authorCrawford, Eliana B.
dc.contributor.authorFringer, Oliver B.
dc.contributor.authorLau, Harriet C. P.
dc.contributor.authorLock, Simon J.
dc.contributor.authorMaloof, Adam C.
dc.contributor.authorMenemenlis, Dimitris
dc.contributor.authorMitrovica, Jerry X.
dc.contributor.authorGreen, J. A. Mattias
dc.contributor.authorHuber, Matthew
dc.date.accessioned2022-01-06T15:50:12Z
dc.date.available2023-01-06 10:50:10en
dc.date.available2022-01-06T15:50:12Z
dc.date.issued2021-12
dc.identifier.citationDaher, Houraa; Arbic, Brian K.; Williams, James G.; Ansong, Joseph K.; Boggs, Dale H.; Müller, Malte ; Schindelegger, Michael; Austermann, Jacqueline; Cornuelle, Bruce D.; Crawford, Eliana B.; Fringer, Oliver B.; Lau, Harriet C. P.; Lock, Simon J.; Maloof, Adam C.; Menemenlis, Dimitris; Mitrovica, Jerry X.; Green, J. A. Mattias; Huber, Matthew (2021). "Long‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models." Journal of Geophysical Research: Planets 126(12): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/171198
dc.description.abstractTides and Earth‐Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows Earth′s rotation rate, increases obliquity, lunar orbit semi‐major axis and eccentricity, and decreases lunar inclination. Tidal and core‐mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi‐major axis. Here we integrate the Earth‐Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are “high‐level” (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and Earth′s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth‐Moon system parameters. Of consequence for ocean circulation and climate, absolute (un‐normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded today′s rate due to a closer Moon. Prior to ∼3 Ga, evolution of inclination and eccentricity is dominated by tidal and core‐mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth‐Moon system. A drawback for our results is that the semi‐major axis does not collapse to near‐zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.Plain Language SummaryTidal dissipation in Earth′s oceans and solid body cause the distance to the Moon and the length of day to increase over time. Tides also change the eccentricity and tilt of the lunar orbit, and Earth′s obliquity (the tilt between the equator plane and the ecliptic plane of our orbit around the Sun). This paper attempts to calculate the evolution of the Earth‐Moon system over the whole of Earth′s history using sophisticated ocean tide and orbit models. Over long time scales, the rate at which tidal energy is being dissipated is affected by the geometrical configuration of the continents, the length of day, and mean sea level, which is affected by plate tectonic forces and the presence or absence of large ice caps. The faster rotating Earth of the past was less efficient at dissipating energy and the present placement of the continents enhances some tides due to resonances. In addition, tidal dissipation in the Moon slows the orbit evolution by absorbing energy from the orbit and there was a time in the distant past when the Moon′s tidal dissipation was large. The evolution of the Earth‐Moon system is complex and uncertain, but it can be addressed with advanced models.Key PointsLong‐term Earth‐Moon system evolution is estimated with backwards‐in‐time integrations using high‐level orbit and ocean tide modelsRapid Earth rotation reduces paleotidal energy dissipation rate relative to paleotidal forcing. Ocean basin geometry is another key factorTidal and core/mantle boundary dissipation within the Moon significantly impact the orbital evolution from about 3–4.5 Ga in the past
dc.publisherGODAE OceanView
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEarth rotation
dc.subject.otherplate tectonics
dc.subject.otherlunar orbit
dc.subject.otherEarth‐Moon history
dc.subject.otherocean tides
dc.titleLong‐Term Earth‐Moon Evolution With High‐Level Orbit and Ocean Tide Models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171198/1/jgre21740_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171198/2/jgre21740.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171198/3/2021JE006875-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2021JE006875
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferencePoliakow, E. ( 2004 ). Numerical modelling of the paleotidal evolution of the Earth‐Moon system. Proceedings of the International Astronomical Union, 2004 ( IAUC197 ), 445 – 452. https://doi.org/10.1017/s174392130400897x
dc.identifier.citedreferenceScotese, C. R., & Golonka, J. ( 1992 ). Paleogeographic atlas: PALEOMAP progress report. Progress report 20‐0692 (p. 34 ). Department of Geology, University of Texas at Arlington.
dc.identifier.citedreferenceSeager, S. ( 2013 ). Exoplanet habitability. Science, 340, 577 – 582. https://doi.org/10.1126/science.1232226
dc.identifier.citedreferenceSkiba, A. W., Zeng, L., Arbic, B. K., Müller, M., & Godwin, W. J. ( 2013 ). On the resonance and shelf/open‐ocean coupling of the global diurnal tides. Journal of Physical Oceanography, 43, 1301 – 1324. https://doi.org/10.1175/jpo-d-12-054.1
dc.identifier.citedreferenceSonett, C. P., & Chan, M. A. ( 1998 ). Neoproterozoic Earth‐Moon dynamics: Rework of the 900 Ma Big Cottonwood Canyon tidal laminae. Geophysical Research Letters, 25, 539 – 542. https://doi.org/10.1029/98GL00048
dc.identifier.citedreferenceStein, C. A., & Stein, S. ( 1992 ). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123 – 129. https://doi.org/10.1038/359123a0
dc.identifier.citedreferenceStepanov, V. N., & Hughes, C. W. ( 2004 ). Parameterization of ocean self‐attraction and loading in numerical models of the ocean circulation. Journal of Geophysical Research, 109, C03037. https://doi.org/10.1029/2003JC002034
dc.identifier.citedreferenceTaylor, G. I. ( 1919 ). Tidal friction in the Irish Sea. Philosophical Transactions of the Royal Society of London, A220, 1 – 93. https://doi.org/10.1098/rspa.1919.0059
dc.identifier.citedreferenceTian, Z., & Wisdom, J. ( 2020 ). Vertical angular momentum constraint on lunar formation and orbital history. Proceedings of the National Academy of Sciences of the United States of America, 117, 15460 – 15464. https://doi.org/10.1073/pnas.2003496117
dc.identifier.citedreferenceTikoo, S. M., Weiss, B. P., Shuster, D. L., Suavet, C., Wang, H., & Grove, T. L. ( 2017 ). A two‐billion‐year history for the lunar dynamo. Science Advances, 3, e1700207. https://doi.org/10.1126/sciadv.1700207
dc.identifier.citedreferenceTouma, J., & Wisdom, J. ( 1994 ). Evolution of the Earth‐Moon system. The Astronomical Journal, 108, 1943 – 1961. https://doi.org/10.1086/117209
dc.identifier.citedreferenceTurbet, M., Bolmont, E., Leconte, J., Forget, F., Selsis, F., Tobie, G., et al. ( 2018 ). Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST‐1 planets. Astronomy and Astrophysics, 612, A68. https://doi.org/10.1051/0004-6361/201731620
dc.identifier.citedreferenceTyler, R. H. ( 2021 ). On the tidal history and future of the Earth–Moon orbital system. The Planetary Science Journal, 2, 70. https://doi.org/10.3847/PSJ/abe53f
dc.identifier.citedreferenceVinogradova, N. T., Ponte, R. M., Quinn, K. J., Tamisiea, M. E., Campin, J.‐M., & Davis, J. L. ( 2015 ). Dynamic adjustment of the ocean circulation to self‐attraction and loading effects. Journal of Physical Oceanography, 45, 678 – 689. https://doi.org/10.1175/JPO-D-14-0150.1
dc.identifier.citedreferenceWahr, J. M. ( 1981 ). Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophysical Journal of the Royal Astronomical Society, 64, 677 – 703. https://doi.org/10.1111/j.1365-246x.1981.tb02690.x
dc.identifier.citedreferenceWahr, J. M., & Sasao, T. ( 1981 ). A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free “core nutation”. Geophysical Journal of the Royal Astronomical Society, 64, 747 – 765. https://doi.org/10.1111/j.1365-246x.1981.tb02693.x
dc.identifier.citedreferenceWalker, J. C. G., & Zahnle, K. J. ( 1986 ). Lunar nodal tide and distance to the Moon during the Precambrian. Nature, 320, 600 – 602. https://doi.org/10.1038/320600a0
dc.identifier.citedreferenceWaltham, D. ( 2015 ). Milankovitch period uncertainties and their impact on cyclostratigraphy. Journal of Sedimentary Research, 85, 990 – 998. https://doi.org/10.2110/jsr.2015.66
dc.identifier.citedreferenceWang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., & Gao, P. ( 2012 ). Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Computational Geosciences, 49, 190 – 199. https://doi.org/10.1016/j.cageo.2012.06.022
dc.identifier.citedreferenceWard, W. R. ( 1975 ). Past orientation of the lunar spin axis. Science, 189, 377 – 379. https://doi.org/10.1126/science.189.4200.377
dc.identifier.citedreferenceWay, M. J., Del Genio, A. D., Kiang, N. Y., Sohl, L. E., Grinspoon, D. H., Aleinov, I., et al. ( 2016 ). Was Venus the first habitable world of our solar system? Geophysical Research Letters, 43, 8376 – 8383. https://doi.org/10.1002/2016GL069790
dc.identifier.citedreferenceWebb, D. J. ( 1976 ). A model of continental‐shelf resonances. In Deep sea research and oceanographic abstracts (Vol. 23, pp. 1 – 15 ). https://doi.org/10.1016/0011-7471(76)90804-4
dc.identifier.citedreferenceWebb, D. J. ( 1982 ). Tides and the evolution of the Earth‐Moon system. Geophysical Journal International, 70, 261 – 271. https://doi.org/10.1111/j.1365-246x.1982.tb06404.x
dc.identifier.citedreferenceWilliams, G. E. ( 1989 ). Late Precambrian tidal rhythmites in South Australia and the history of the Earth’s rotation. Journal of the Geological Society, 146, 97 – 111. https://doi.org/10.1144/gsjgs.146.1.0097
dc.identifier.citedreferenceWilliams, G. E. ( 1990 ). Tidal rhythmites: Key to the history of the Earth’s rotation and the lunar orbit. Journal of Physics of the Earth, 38, 475 – 491. https://doi.org/10.4294/jpe1952.38.475
dc.identifier.citedreferenceWilliams, G. E. ( 2000 ). Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Reviews of Geophysics, 38, 37 – 59. https://doi.org/10.1029/1999rg900016
dc.identifier.citedreferenceWilliams, J. G., & Boggs, D. H. ( 2015 ). Tides on the Moon: Theory and determination of dissipation. Journal of Geophysical Research: Planets, 120, 689 – 724. https://doi.org/10.1002/2014JE004755
dc.identifier.citedreferenceWilliams, J. G., & Boggs, D. H. ( 2016 ). Secular tidal changes in lunar orbit and Earth rotation. Celestial Mechanics and Dynamical Astronomy, 126, 89 – 129. https://doi.org/10.1007/s10569-016-9702-3
dc.identifier.citedreferenceWilliams, J. G., Boggs, D. H., Park, R. S., & Folkner, W. M. ( 2021 ). DE440 lunar orbit, physical librations, and surface coordinates. JPL IOM.
dc.identifier.citedreferenceWilliams, J. G., Boggs, D. H., Yoder, C. F., Ratcliff, J. T., & Dickey, J. O. ( 2001 ). Lunar rotational dissipation in solid body and molten core. Journal of Geophysical Research, 106, 27933 – 27968. https://doi.org/10.1029/2000JE001396
dc.identifier.citedreferenceWilliams, J. G., Konopliv, A. S., Boggs, D. H., Park, R. S., Yuan, D.‐N., Lemoine, F. G., et al. ( 2014 ). Lunar interior properties from the GRAIL mission. Journal of Geophysical Research: Planets, 119, 1546 – 1578. https://doi.org/10.1002/2013JE004559
dc.identifier.citedreferenceWilliams, J. G., Sinclair, W. S., & Yoder, C. F. ( 1978 ). Tidal acceleration of the Moon. Geophysical Research Letters, 5, 943 – 946. https://doi.org/10.1029/GL005i011p00943
dc.identifier.citedreferenceWilson, J. T. ( 1966 ). Did the Atlantic close and then re‐open? Nature, 211, 676 – 681. https://doi.org/10.1038/211676a0
dc.identifier.citedreferenceWinn, J. N., & Fabrycky, D. C. ( 2015 ). The occurrence and architecture of exoplanetary systems. Annual Review of Astronomy and Astrophysics, 53, 409 – 447. https://doi.org/10.1146/annurev-astro-082214-122246
dc.identifier.citedreferenceWunsch, C. ( 1972 ). Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Reviews of Geophysics, 10, 1 – 49. https://doi.org/10.1029/rg010i001p00001
dc.identifier.citedreferenceYang, J., Boué, G., Fabrycky, D. C., & Abbot, D. S. ( 2014 ). Strong dependence of the inner edge of the habitable zone on planetary rotation rate. The Astrophysical Journal Letters, 787, L2. https://doi.org/10.1088/2041-8205/787/1/L2
dc.identifier.citedreferenceZaffos, A., Finnegan, S., & Peters, S. E. ( 2017 ). Plate tectonic regulation of global marine animal diversity. Proceedings of the National Academy of Sciences of the United States of America, 114 ( 22 ), 5653 – 5658. https://doi.org/10.1073/pnas.1702297114
dc.identifier.citedreferenceZahnle, K., & Walker, J. C. G. ( 1987 ). A constant daylength during the Precambrian Era? Precambrian Research, 37, 95 – 105. https://doi.org/10.1016/0301-9268(87)90073-8
dc.identifier.citedreferenceZhang, S., Wang, E. U., Hammarlund, X., Wang, H., Costa, M. M., Bjerrum, C. J., et al. ( 2015 ). Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of the United States of America, 112, E1406 – E1413. https://doi.org/10.1073/pnas.1502239112
dc.identifier.citedreferenceAdams, C., Miller, H., Toselli, A., & Griffin, W. ( 2008 ). The Puncoviscana Formation of northwest Argentina: U‐Pb geochronology of detrital zircons and Rb‐Sr metamorphic ages and their bearing on its stratigraphic age, sediment provenance and tectonic setting. Neues Jahrbuch für Geologie und Paläontologie ‐ Abhandlungen, 247, 341 – 352. https://doi.org/10.1127/0077-7749/2008/0247-0341
dc.identifier.citedreferenceArbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., et al. ( 2018 ). A primer on global internal tide and internal gravity wave continuum modeling in HYCOM and MITgcm. In E. P. Chassignet, A. Pascual, J. Tintore, & J. Verron (Eds.), New frontiers in operational oceanography (pp. 307 – 392 ). GODAE OceanView. https://doi.org/10.17125/gov2018.ch13
dc.identifier.citedreferenceArbic, B. K., & Garrett, C. ( 2010 ). A coupled oscillator model of shelf and ocean tides. Continental Shelf Research, 30, 564 – 574. https://doi.org/10.1016/j.csr.2009.07.008
dc.identifier.citedreferenceArbic, B. K., Garner, S. T., Hallberg, R. W., & Simmons, H. L. ( 2004 ). The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep Sea Research Part II: Topical Studies in Oceanography, 51, 3069 – 3101. https://doi.org/10.1016/j.dsr2.2004.09.014
dc.identifier.citedreferenceArbic, B. K., Karsten, R. H., & Garrett, C. ( 2009 ). On tidal resonance in the global ocean and the back‐effect of coastal tides upon open‐ocean tides. Atmosphere‐Ocean, 47, 239 – 266. https://doi.org/10.3137/OC311.2009
dc.identifier.citedreferenceArbic, B. K., MacAyeal, D. R., Mitrovica, J. X., & Milne, G. A. ( 2004 ). Paleoclimate: Ocean tides and Heinrich events. Nature, 432, 460. https://doi.org/10.1038/432460a
dc.identifier.citedreferenceArbic, B. K., Mitrovica, J. X., MacAyeal, D. R., & Milne, G. A. ( 2008 ). On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23, PA3211. https://doi.org/10.1029/2007PA001573
dc.identifier.citedreferenceArbic, B. K., & Schindelegger, M. ( 2021 ). Long‐term Earth‐Moon evolution with high‐level orbit and ocean tide models [Data set]. University of Michigan–Deep Blue Data. https://doi.org/10.7302/ZCK4-0058
dc.identifier.citedreferenceArbic, B. K., St‐Laurent, P., Sutherland, G., & Garrett, C. ( 2007 ). On the resonance and influence of the tides in Ungava Bay and Hudson Strait. Geophysical Research Letters, 34, L17606. https://doi.org/10.1029/2007GL030845
dc.identifier.citedreferenceBarboni, M., Boehnke, P., Keller, B., Kohl, I. E., Schoene, B., Young, E. D., & McKeegan, K. D. ( 2017 ). Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365. https://doi.org/10.1126/sciadv.1602365
dc.identifier.citedreferenceBarley, M. E., Pickard, A. L., & Sylvester, P. J. ( 1997 ). Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature, 385, 55 – 58. https://doi.org/10.1038/385055a0
dc.identifier.citedreferenceBarnes, R. ( 2017 ). Tidal locking of habitable exoplanets. Celestial Mechanics and Dynamical Astronomy, 129, 509 – 536. https://doi.org/10.1007/s10569-017-9783-7
dc.identifier.citedreferenceBartlett, B. C., & Stevenson, D. J. ( 2016 ). Analysis of a Precambrian resonance‐stabilized day length. Geophysical Research Letters, 43, 5716 – 5724. https://doi.org/10.1002/2016GL068912
dc.identifier.citedreferenceBenz, W., Slattery, W. L., & Cameron, A. G. W. ( 1986 ). The origin of the Moon and the single‐impact hypothesis I. Icarus, 66, 515 – 535. https://doi.org/10.1016/0019-1035(86)90088-6
dc.identifier.citedreferenceBenz, W., Slattery, W. L., & Cameron, A. G. W. ( 1987 ). The origin of the Moon and the single‐impact hypothesis II. Icarus, 71, 30 – 45. https://doi.org/10.1016/0019-1035(87)90160-6
dc.identifier.citedreferenceBenz, W., Slattery, W. L., & Melosh, H. J. ( 1989 ). The origin of the Moon and the single‐impact hypothesis III. Icarus, 81, 113 – 131. https://doi.org/10.1016/0019-1035(89)90129-2
dc.identifier.citedreferenceBills, B. G., & Ray, R. D. ( 1999 ). Lunar orbital evolution: A synthesis of recent results. Geophysical Research Letters, 26, 3045 – 3048. https://doi.org/10.1029/1999GL008348
dc.identifier.citedreferenceBlackledge, B. W., Green, J. A. M., Barnes, R., & Way, M. J. ( 2020 ). Tides on other Earths: Implications for exoplanet and palaeo‐tidal simulations. Geophysical Research Letters, 47, e2019GL085746. https://doi.org/10.1029/2019GL085746
dc.identifier.citedreferenceBorg, L. E., Connelly, J. N., Boyet, M., & Carlson, R. W. ( 2011 ). Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature, 477, 70 – 72. https://doi.org/10.1038/nature10328
dc.identifier.citedreferenceBoulila, S., Laskar, J., Haq, B. U., Galbrun, B., & Hara, N. ( 2018 ). Long‐term cyclicities in Phanerozoic sea‐level sedimentary record and their potential drivers. Global and Planetary Change, 165, 128 – 136. https://doi.org/10.1016/j.gloplacha.2018.03.004
dc.identifier.citedreferenceBrown, M., Johnson, T., & Gardiner, N. J. ( 2020 ). Plate tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences, 48 ( 1 ), 291 – 320. https://doi.org/10.1146/annurev-earth-081619-052705
dc.identifier.citedreferenceBuffett, B. A. ( 1996 ). Gravitational oscillations in the length of day. Geophysical Research Letters, 23, 2279 – 2282. https://doi.org/10.1029/96GL02083
dc.identifier.citedreferenceByrne, H. M., Green, J. A. M., Balbus, S. A., & Ahlberg, P. A. ( 2020 ). Tides: A key environmental driver of osteichthyan evolution and the fish‐tetrapod transition? Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 476, 20200355. https://doi.org/10.1098/rspa.2020.0355
dc.identifier.citedreferenceCameron, A. G. W. ( 1997 ). The origin of the Moon and the single‐impact hypothesis V. Icarus, 126, 126 – 137. https://doi.org/10.1006/icar.1996.5642
dc.identifier.citedreferenceCameron, A. G. W., & Benz, W. ( 1991 ). The origin of the Moon and the single‐impact hypothesis IV. Icarus, 92, 204 – 216. https://doi.org/10.1016/0019-1035(91)90046-V
dc.identifier.citedreferenceCameron, A. G. W., & Ward, W. R. ( 1976 ). The origin of the Moon. In 7th lunar and planetary science conference (Vol. 7, pp. 120 – 122 ).
dc.identifier.citedreferenceCanup, R. M., & Asphaug, E. ( 2001 ). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708 – 712. https://doi.org/10.1038/35089010
dc.identifier.citedreferenceCartwright, D. E. ( 1977 ). Oceanic tides. Reports on Progress in Physics, 40, 665 – 708. https://doi.org/10.1088/0034-4885/40/6/002
dc.identifier.citedreferenceCartwright, D. E. ( 1993 ). Theory of ocean tides with application to altimetry. In Satellite altimetry in geodesy and oceanography (pp. 100 – 141 ). Springer.
dc.identifier.citedreferenceCates, N. L., & Mojzsis, S. J. ( 2007 ). Pre‐3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Quebec. Earth and Planetary Science Letters, 255, 9 – 21. https://doi.org/10.1016/j.epsl.2006.11.034
dc.identifier.citedreferenceChapront‐Touzé, M., & Chapront, J. ( 1988 ). Elp 2000‐85: A semi‐analytical lunar ephemeris adequate for historical times. Astronomy and Astrophysics, 190, 342 – 352.
dc.identifier.citedreferenceChapront‐Touzé, M., & Chapront, J. ( 1991 ). Lunar tables and programs from 4000 B.C. to A.D. 8000. Willmann‐Bell.
dc.identifier.citedreferenceCorreia, A. C. M. ( 2006 ). The core–mantle friction effect on the secular spin evolution of terrestrial planets. Earth and Planetary Science Letters, 252, 398 – 412. https://doi.org/10.1016/j.epsl.2006.10.007
dc.identifier.citedreferenceĆuk, M., Hamilton, D. P., Lock, S. J., & Stewart, S. T. ( 2016 ). Tidal evolution of the Moon from a high‐obliquity, high‐angular‐momentum Earth. Nature, 539, 402 – 406. https://doi.org/10.1038/nature19846
dc.identifier.citedreferenceĆuk, M., Hamilton, D. P., & Stewart, S. T. ( 2019 ). Early dynamics of the lunar core. Journal of Geophysical Research: Planets, 124, 2917 – 2928. https://doi.org/10.1029/2019JE006016
dc.identifier.citedreferenceDahlen, F. A. ( 1976 ). The passive influence of the oceans upon the rotation of the Earth. Geophysical Journal of the Royal Astronomical Society, 46, 363 – 406. https://doi.org/10.1111/j.1365-246x.1976.tb04163.x
dc.identifier.citedreferenceDarwin, G. H. ( 1892 ). The tides and kindred phenomena in the solar system. Nova, 60 ( 1 ), 213.
dc.identifier.citedreferenceDavies, H. S., Green, J. A. M., & Duarte, J. C. ( 2020 ). Back to the future II: Tidal evolution of four supercontinent scenarios. Earth System Dynamics, 11, 291 – 299. https://doi.org/10.5194/esd-11-291-2020
dc.identifier.citedreferencede Azarevich, V. L. L., & Azarevich, M. B. ( 2017 ). Lunar recession encoded in tidal rhythmites: A selective overview with examples from Argentina. Geo‐Marine Letters, 37, 333 – 344. https://doi.org/10.1007/s00367-017-0500-z
dc.identifier.citedreferenceDehler, C. M., Fanning, C. M., Link, P. K., Kingsbury, E. M., & Rybczynski, D. ( 2010 ). Maximum depositional age and provenance of the Uinta Mountain Group and Big Cottonwood Formation, northern Utah: Paleogeography of rifting western Laurentia. The Geological Society of America Bulletin, 122, 1686 – 1699. https://doi.org/10.1130/B30094.1
dc.identifier.citedreferenceDel Genio, A. D., Way, M. J., Amundsen, D. S., Aleinov, I., Kelley, M., Kiang, N. Y., & Clune, T. L. ( 2018 ). Habitable climate scenarios for Proxima Centauri b with a dynamic ocean. Astrobiology, 19, 99 – 125. https://doi.org/10.1089/ast.2017.1760
dc.identifier.citedreferenceDickey, J. O., Bender, L., Faller, J. E., Newhall, X. X., Ricklefs, R. L., Ries, J. G., et al. ( 1994 ). Lunar laser ranging: A continuing legacy of the Apollo program. Science, 265, 482 – 490. https://doi.org/10.1126/science.265.5171.482
dc.identifier.citedreferenceDumberry, M., & Mound, J. ( 2010 ). Inner core–mantle gravitational locking and the super‐rotation of the inner core. Geophysical Journal International, 181, 806 – 817. https://doi.org/10.1111/j.1365-246X.2010.04563.x
dc.identifier.citedreferenceEfron, B. ( 1987 ). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82, 171 – 185. https://doi.org/10.1080/01621459.1987.10478410
dc.identifier.citedreferenceEgbert, G. D., & Erofeeva, S. Y. ( 2002 ). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183 – 204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
dc.identifier.citedreferenceEgbert, G. D., & Ray, R. D. ( 2000 ). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775 – 778. https://doi.org/10.1038/35015531
dc.identifier.citedreferenceEgbert, G. D., & Ray, R. D. ( 2001 ). Estimates of M 2 tidal energy dissipation from TOPEX/Poseidon altimeter data. Journal of Geophysical Research Oceans, 106, 22475 – 22502. https://doi.org/10.1029/2000jc000699
dc.identifier.citedreferenceEgbert, G. D., & Ray, R. D. ( 2003 ). Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophysical Research Letters, 30, 1907. https://doi.org/10.1029/2003GL017676
dc.identifier.citedreferenceEgbert, G. D., Ray, R. D., & Bills, B. G. ( 2004 ). Numerical modeling of the global semidiurnal tide in the present day and in the Last Glacial Maximum. Journal of Geophysical Research Oceans, 109, C03003. https://doi.org/10.1029/2003JC001973
dc.identifier.citedreferenceEinšpigel, D., & Martinec, Z. ( 2017 ). Time‐domain modeling of global ocean tides generated by the full lunisolar potential. Ocean Dynamics, 67, 165 – 189. https://doi.org/10.1007/s10236-016-1016-1
dc.identifier.citedreferenceEvans, D. A. D. ( 2013 ). Reconstructing pre‐Pangean supercontinents. The Geological Society of America Bulletin, 125 ( 11–12 ), 1735 – 1751. https://doi.org/10.1130/B30950.1
dc.identifier.citedreferenceFarrell, W. E. ( 1972 ). Deformation of the Earth by surface loads. Reviews of Geophysics and Space Physics, 10, 761 – 797. https://doi.org/10.1029/rg010i003p00761
dc.identifier.citedreferenceGarrett, C. ( 1972 ). Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature, 238, 441 – 443. https://doi.org/10.1038/238441a0
dc.identifier.citedreferenceGarrett, C. J. R., & Munk, W. ( 1971 ). The age of the tide and “Q” of the oceans. Deep‐Sea Research, 38, 493 – 503. https://doi.org/10.1016/0011-7471(71)90073-8
dc.identifier.citedreferenceGerstenkorn, H. ( 1955 ). Über Gezeitenreibung beim Zweikörperproblem. Zeitschrift für Astrophysik, B36, 245 – 274.
dc.identifier.citedreferenceGerstenkorn, H. ( 1967 ). On the controversy over the effect of tidal friction upon the history of the Earth‐Moon system. Icarus, 7, 160 – 167. https://doi.org/10.1016/0019-1035(67)90060-7
dc.identifier.citedreferenceGerstenkorn, H. ( 1969 ). The earliest past of the Earth‐Moon system. Icarus, 11, 189 – 207. https://doi.org/10.1016/0019-1035(69)90044-x
dc.identifier.citedreferenceGill, A. E. ( 1982 ). Atmosphere‐ocean dynamics. International Geophysics Series (Vol. 30 ). Academic Press.
dc.identifier.citedreferenceGoldreich, P. ( 1966 ). History of the lunar orbit. Reviews of Geophysics, 4, 411 – 439. https://doi.org/10.1029/RG004i004p00411
dc.identifier.citedreferenceGreen, J. A. M. ( 2010 ). Ocean tides and resonance. Ocean Dynamics, 60, 1243 – 1253. https://doi.org/10.1007/s10236-010-0331-1
dc.identifier.citedreferenceGreen, J. A. M., Davies, H. S., Duarte, J. C., Creveling, J. R., & Scotese, C. ( 2020 ). Weak tides during Cryogenian glaciations. Nature Communications, 11, 6227. https://doi.org/10.1038/s41467-020-20008-3
dc.identifier.citedreferenceGreen, J. A. M., & Huber, M. ( 2013 ). Tidal dissipation in the early Eocene and implications for ocean mixing. Geophysical Research Letters, 40, 2707 – 2713. https://doi.org/10.1002/grl.50510
dc.identifier.citedreferenceGreen, J. A. M., Huber, M., Waltham, D., Buzan, J., & Wells, M. ( 2017 ). Explicitly modelled deep‐time tidal dissipation and its implication for lunar history. Earth and Planetary Science Letters, 461, 46 – 53. https://doi.org/10.1016/j.epsl.2016.12.038
dc.identifier.citedreferenceGreen, J. A. M., Molloy, J. L., Davies, H. S., & Duarte, J. C. ( 2018 ). Is there a tectonically driven super‐tidal cycle? Geophysical Research Letters, 45, 3568 – 3576. https://doi.org/10.1002/2017GL076695
dc.identifier.citedreferenceGreen, J. A. M., Way, M. J., & Barnes, R. ( 2019 ). Consequences of tidal dissipation in a putative Venusian ocean. The Astrophysical Journal Letters, 876, L22. https://doi.org/10.3847/2041-8213/ab133b
dc.identifier.citedreferenceGreff‐Lefftz, M., & Legros, H. ( 1999 ). Core rotational dynamics and geological events. Science, 286, 1707 – 1709. https://doi.org/10.1126/science.286.5445.1707
dc.identifier.citedreferenceGriffiths, S. D., & Peltier, W. R. ( 2009 ). Modeling of polar ocean tides at the Last Glacial Maximum: Amplification, sensitivity, and climatological implications. Journal of Climate, 22, 2905 – 2924. https://doi.org/10.1175/2008JCLI2540.1
dc.identifier.citedreferenceGrimm, S. L., Demory, B.‐O., Gillon, M., Dorn, C., Agol, E., Burdanov, A., et al. ( 2018 ). The nature of the TRAPPIST‐1 exoplanets. Astronomy and Astrophysics, 613, A68. https://doi.org/10.1051/0004-6361/201732233
dc.identifier.citedreferenceHansen, K. S. ( 1982 ). Secular effects of oceanic tidal dissipation on the Moon’s orbit and the Earth’s rotation. Reviews of Geophysics, 20, 457 – 480. https://doi.org/10.1029/rg020i003p00457
dc.identifier.citedreferenceHartmann, W. K., & Davis, D. R. ( 1975 ). Satellite‐sized planetesimals and lunar origin. Icarus, 24, 504 – 515. https://doi.org/10.1016/0019-1035(75)90070-6
dc.identifier.citedreferenceHeath, R. A. ( 1981 ). Estimates of the resonant period and Q in the semi‐diurnal tidal band in the North Atlantic and Pacific Oceans. Deep Sea Research Part A: Oceanographic Research Papers, 28, 481 – 493. https://doi.org/10.1016/0198-0149(81)90139-4
dc.identifier.citedreferenceHendershott, M. C. ( 1972 ). The effects of solid Earth deformation on global ocean tides. Geophysical Journal International, 29, 389 – 402. https://doi.org/10.1111/j.1365-246x.1972.tb06167.x
dc.identifier.citedreferenceHendershott, M. C. ( 1981 ). Long waves and ocean tides. In B. A. Warren, & C. Wunsch (Eds.), Evolution of physical oceanography (pp. 292 – 341 ). MIT Press.
dc.identifier.citedreferenceHerold, N., Buzan, J., Seton, M., Goldner, A., Green, J. A. M., Müller, R. D., et al. ( 2014 ). A suite of early Eocene (∼55 Ma) climate model boundary conditions. Geoscientific Model Development, 7, 2077 – 2090. https://doi.org/10.5194/gmd-7-2077-2014
dc.identifier.citedreferenceJayne, S. R., & St Laurent, L. C. ( 2001 ). Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28, 811 – 814. https://doi.org/10.1029/2000gl012044
dc.identifier.citedreferenceJohnson, B. W., & Wing, B. A. ( 2020 ). Limited Archaean continental emergence reflected in an early Archaean 18 O‐enriched ocean. Nature Geoscience, 13, 243 – 248. https://doi.org/10.1038/s41561-020-0538-9
dc.identifier.citedreferenceKagan, B. A., & Maslova, N. B. ( 1994 ). A stochastic model of the Earth‐Moon tidal evolution accounting for cyclic variations of resonant properties of the ocean: An asymptotic solution. Earth, Moon, and Planets, 66, 173 – 188. https://doi.org/10.1007/bf00644130
dc.identifier.citedreferenceKagan, B. A., & Sundermann, J. ( 1996 ). Dissipation of tidal energy, paleotides, and evolution of the Earth‐Moon system. In R. Dmowska, & B. Saltzman (Eds.), Advances in geophysics (Vol. 38, pp. 179 – 266 ). Academic Press. https://doi.org/10.1016/s0065-2687(08)60021-7
dc.identifier.citedreferenceKasting, J. F., Whitmire, D. P., & Reynolds, R. T. ( 1993 ). Habitable zones around main sequence stars. Icarus, 101, 108 – 128. https://doi.org/10.1006/icar.1993.1010
dc.identifier.citedreferenceKaula, W. M. ( 1964 ). Tidal dissipation by solid friction and the resulting orbital evolution. Reviews of Geophysics, 2, 661 – 685. https://doi.org/10.1029/RG002i004p00661
dc.identifier.citedreferenceKaula, W. M. ( 1966 ). Theory of satellite geodesy: Applications of satellites to geodesy. Blaisdell Publishing Co. Reprinted in 2000 by Dover.
dc.identifier.citedreferenceKorenaga, J. ( 2013 ). Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41, 117 – 151. https://doi.org/10.1146/annurev-earth-050212-124208
dc.identifier.citedreferenceKorenaga, J. ( 2018 ). Estimating the formation age of distribution of continental 494 crust by unmixing zircon ages. Earth and Planetary Science Letters, 482, 388 – 395. https://doi.org/10.1016/j.epsl.2017.11.039
dc.identifier.citedreferenceKruijer, T. S., & Kleine, T. ( 2017 ). Tungsten isotopes and the origin of the Moon. Earth and Planetary Science Letters, 475, 15 – 24. https://doi.org/10.1016/j.epsl.2017.07.021
dc.identifier.citedreferenceKvale, E. P., Johnson, H. W., Sonett, C. P., Archer, A. W., & Zawistoski, A. ( 1999 ). Calculating lunar retreat rates using tidal rhythmites. Journal of Sedimentary Research, 69, 1154 – 1168. https://doi.org/10.2110/jsr.69.1154
dc.identifier.citedreferenceLambeck, K. ( 1977 ). Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 287, 545 – 594. https://doi.org/10.1098/rsta.1977.0159
dc.identifier.citedreferenceLaskar, J., Fienga, A., Gastineau, M., & Manche, H. ( 2011 ). La2010: A new orbital solution for the long‐term motion of the Earth. Astronomy and Astrophysics, 532, A89. https://doi.org/10.1051/0004-6361/201116836
dc.identifier.citedreferenceLaskar, J., Joutel, F., & Robutel, P. ( 1993 ). Stabilization of the Earth’s obliquity by the Moon. Nature, 361, 615 – 617. https://doi.org/10.1038/361615a0
dc.identifier.citedreferenceLaskar, J., & Robutel, P. ( 1993 ). The chaotic obliquity of the planets. Nature, 361, 608 – 612. https://doi.org/10.1038/361608a0
dc.identifier.citedreferenceLaskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., & Levrard, B. ( 2004 ). A long‐term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428, 261 – 285. https://doi.org/10.1051/0004-6361:20041335
dc.identifier.citedreferenceLau, H. C. P., & Faul, U. H. ( 2019 ). Anelasticity from seismic to tidal timescales: Theory and observations. Earth and Planetary Science Letters, 508, 18 – 29. https://doi.org/10.1016/j.epsl.2018.12.009
dc.identifier.citedreferenceLau, H. C. P., Faul, U., Mitrovica, J. X., Al‐Attar, D., Tromp, J., & Garapić, G. ( 2017 ). Anelasticity across seismic to tidal timescales: A self‐consistent approach. Geophysical Journal International, 208, 368 – 384. https://doi.org/10.1093/gji/ggw401
dc.identifier.citedreferenceLau, H. C. P., Yang, H.‐Y., Tromp, J., Mitrovica, J., Latychev, K., & Al‐Attar, D. ( 2015 ). A normal mode treatment of semi‐diurnal body tides on an aspherical, rotating and anelastic Earth. Geophysical Journal International, 202, 1392 – 1406. https://doi.org/10.1093/gji/ggv227
dc.identifier.citedreferenceLe Bars, M., Wieczorek, M. A., Karatekin, O., Cébron, D., & Laneuville, M. ( 2011 ). An impact–driven dynamo for the early Moon. Nature, 479, 215 – 218. https://doi.org/10.1038/nature10565
dc.identifier.citedreferenceLevrard, B., & Laskar, J. ( 2003 ). Climate friction and the Earth’s obliquity. Geophysical Journal International, 154, 970 – 990. https://doi.org/10.1046/j.1365-246X.2003.02021.x
dc.identifier.citedreferenceLissauer, J. J., Barnes, J. W., & Chambers, J. E. ( 2012 ). Obliquity variations of a moonless Earth. Icarus, 217, 77 – 87. https://doi.org/10.1016/j.icarus.2011.10.013
dc.identifier.citedreferenceLock, S. J., Bermingham, K. R., Parai, R., & Boyet, M. ( 2020 ). Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Science Reviews, 216, 109. https://doi.org/10.1007/s11214-020-00729-z
dc.identifier.citedreferenceLock, S. J., Stewart, S. T., Petaev, M. I., Leinhardt, Z., Mace, M. T., Jacobsen, S. B., & Ćuk, M. ( 2018 ). The origin of the Moon within a terrestrial synestia. Journal of Geophysical Research: Planets, 123, 910 – 951. https://doi.org/10.1002/2017JE005333
dc.identifier.citedreferenceLourens, L. J., Wehausen, R., & Brumsack, H. J. ( 2001 ). Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature, 409, 1029 – 1033. https://doi.org/10.1038/35059062
dc.identifier.citedreferenceMacDonald, G. J. F. ( 1964 ). Tidal friction. Reviews of Geophysics, 2, 467 – 541. https://doi.org/10.1029/RG002i003p00467
dc.identifier.citedreferenceMacDonald, G. J. F. ( 1966 ). Origin of the Moon: Dynamical considerations. In The earth‐moon system (pp. 165 – 209 ). Springer. https://doi.org/10.1007/978-1-4684-8401-4_12
dc.identifier.citedreferenceMaurice, M., Tosi, N., Schwinger, S., Breuer, D., & Kleine, T. ( 2020 ). A long‐lived magma ocean on a young Moon. Science Advances, 6, eaba8949. https://doi.org/10.1126/sciadv.aba8949
dc.identifier.citedreferenceMelosh, H. J., & Kipp, M. E. ( 1989 ). Giant impact theory of the Moon’s origin: First 3‐D hydrocode results. In 20th lunar and planetary science conference (Vol. 20, pp. 685 – 686 ).
dc.identifier.citedreferenceMerdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, M. L., Blades, J. A., et al. ( 2021 ). Extending full‐plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth‐Science Reviews, 214, 103477. https://doi.org/10.1016/j.earscirev.2020.103477
dc.identifier.citedreferenceMeyers, S. R., & Malinverno, A. ( 2018 ). Proterozoic Milankovitch cycles and the history of the solar system. Proceedings of the National Academy of Sciences of the United States of America, 115, 6363 – 6368. https://doi.org/10.1073/pnas.1717689115
dc.identifier.citedreferenceMorrow, E., Mitrovica, J. X., Forte, A., Glišović, P., & Huybers, P. ( 2012 ). An enigma in estimates of the Earth’s dynamic ellipticity. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.2012.05703.x
dc.identifier.citedreferenceMüller, J., Murphy, T. W., Jr., Schreiber, U., Shelus, P. J., Torre, J.‐M., Williams, J. G., et al. ( 2019 ). Lunar laser ranging–a tool for general relativity, lunar geophysics and earth science. Journal of Geodesy, 93, 2195 – 2210. https://doi.org/10.1007/s00190-019-01296-0
dc.identifier.citedreferenceMüller, M. ( 2007 ). The free oscillations of the World Ocean in the period range 8 to 165 hours including the full loading effect. Geophysical Research Letters, 34, L05606. https://doi.org/10.1029/2006gl028870
dc.identifier.citedreferenceMüller, M. ( 2008a ). Synthesis of forced oscillations, Part I: Tidal dynamics and the influence of the loading and self‐attraction effect. Ocean Modelling, 20, 207 – 222. https://doi.org/10.1016/j.ocemod.2007.09.001
dc.identifier.citedreferenceMüller, M. ( 2008b ). A large spectrum of free oscillations of the World Ocean including the full ocean loading and self‐attraction effects. In Hamburg studies on maritime affairs. Springer Berlin.
dc.identifier.citedreferenceMüller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. ( 2008 ). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, Q04006. https://doi.org/10.1029/2007gc001743
dc.identifier.citedreferenceMüller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., & Heine, C. ( 2008 ). Long‐term sea‐level fluctuations driven by ocean basin dynamics. Science, 319, 1357 – 1362. https://doi.org/10.1126/science.1151540
dc.identifier.citedreferenceMüller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., et al. ( 2016 ). Ocean basin evolution and global‐scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44, 107 – 138. https://doi.org/10.1146/annurev-earth-060115-012211
dc.identifier.citedreferenceMunk, W. ( 1968 ). Once again‐tidal friction. The Quarterly Journal of the Royal Astronomical Society, 9, 352 – 375.
dc.identifier.citedreferenceMunk, W., & Wunsch, C. ( 1998 ). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45, 1977 – 2010. https://doi.org/10.1016/s0967-0637(98)00070-3
dc.identifier.citedreferenceMunk, W. H., & MacDonald, G. J. F. ( 1960 ). The rotation of the Earth. Cambridge University Press.
dc.identifier.citedreferenceNance, R. D., & Murphy, J. B. ( 2013 ). Origins of the supercontinent cycle. Geoscience Frontiers, 4, 439 – 448. https://doi.org/10.1016/j.gsf.2012.12.007
dc.identifier.citedreferenceO’Neil, J., Carlson, R. W., Paquette, J.‐L., & Francis, D. ( 2012 ). Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Research, 220–221, 23 – 44. https://doi.org/10.1016/j.precamres.2012.07.009
dc.identifier.citedreferenceOoe, M. ( 1989 ). Effects of configuration and bathymetry of the oceans on the tidal dissipation of the Earth’s rotation. Journal of Physics of the Earth, 37, 345 – 355. https://doi.org/10.4294/jpe1952.37.345
dc.identifier.citedreferencePark, R. S., Folkner, W. M., Williams, J. G., & Boggs, D. H. ( 2021 ). The JPL planetary and lunar ephemerides DE440 and DE441. The Astronomical Journal, 161, 105. https://doi.org/10.3847/1538-3881/abd414
dc.identifier.citedreferencePetit, G., & Luzum, B. ( 2010 ). IERS conventions (2010), IERS Technical Note No. 36, International Earth Rotation and Reference Systems Service (IERS). (Tech. Rep.). Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main. Retrieved from http://www.iers.org/TN36/
dc.identifier.citedreferencePiani, L., Marrocchi, Y., Rigaudier, T., Vacher, L. G., Thomassin, D., & Marty, B. ( 2020 ). Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, 369, 1110 – 1113. https://doi.org/10.1126/science.aba1948
dc.identifier.citedreferencePiper, J. ( 2018 ). Dominant Lid Tectonics behaviour of continental lithosphere in Precambrian times: Palaeomagnetism confirms prolonged quasi‐integrity and absence of supercontinent cycles. Geoscience Frontiers, 9 ( 1 ), 61 – 89. https://doi.org/10.1016/j.gsf.2017.07.009
dc.identifier.citedreferencePlatzman, G. W. ( 1984 ). Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides. Journal of Physical Oceanography, 14, 1532 – 1550. https://doi.org/10.1175/1520-0485(1984)014<1532:nmotwo>2.0.co;2
dc.identifier.citedreferenceRay, R. D. ( 1994 ). Tidal energy dissipation: Observations from astronomy, geodesy, and oceanography. In S. K. Majumdar, E. W. Miller, G. S. Forbes, R. F. Schmalz, & A. A. Panah (Eds.), The oceans (pp. 171 – 185 ). Pennsylvania Academy of Sciences.
dc.identifier.citedreferenceRay, R. D. ( 1998 ). Ocean self‐attraction and loading in numerical tidal models. Marine Geodesy, 21, 181 – 192. https://doi.org/10.1080/01490419809388134
dc.identifier.citedreferenceRay, R. D., Eanes, R. J., & Lemoine, F. G. ( 2001 ). Constraints on energy dissipation in the Earth’s body tide from satellite tracking and altimetry. Geophysical Journal International, 144, 471 – 480. https://doi.org/10.1046/j.1365-246x.2001.00356.x
dc.identifier.citedreferenceRooney, A. D., Strauss, J. V., Brandon, A. D., & Macdonald, F. A. ( 2015 ). A cryogenian chronology: Two long‐lasting synchronous Neoproterozoic glaciations. Geology, 43, 459 – 462. https://doi.org/10.1130/G36511.1
dc.identifier.citedreferenceRoss, M. N., & Schubert, G. ( 1989 ). Evolution of the lunar orbit with temperature‐and frequency‐dependent dissipation. Journal of Geophysical Research Solid Earth, 94, 9533 – 9544. https://doi.org/10.1029/jb094ib07p09533
dc.identifier.citedreferenceRubincam, D. P. ( 2016 ). Tidal friction in the Earth‐Moon system and Laplace planes: Darwin redux. Icarus, 266, 24 – 43. https://doi.org/10.1016/j.icarus.2015.10.024
dc.identifier.citedreferenceSchaeffer, N. ( 2013 ). Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochemistry, Geophysics, Geosystems, 14, 751 – 758. https://doi.org/10.1002/ggge.20071
dc.identifier.citedreferenceSchaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., & Steinhage, D. ( 2016 ). A global, high‐resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth System Science Data, 8, 543 – 557. https://doi.org/10.5194/essd-8-543-2016
dc.identifier.citedreferenceSchindelegger, M., Green, J. A. M., Wilmes, S.‐B., & Haigh, I. D. ( 2018 ). Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593 – 4609. https://doi.org/10.1029/2018JC013959
dc.identifier.citedreferenceSchmitz, M. D., & Davydov, V. ( 2012 ). Quantitative radiometric and biostratigraphic calibration of the Pennsylvanian—Early Permian (Cisuralian) time scale and pan‐Euramerican chronostratigraphic correlation. The Geological Society of America Bulletin, 124, 549 – 577. https://doi.org/10.1130/B30385.1
dc.identifier.citedreferenceSchubert, G., & Sandwell, D. ( 1989 ). Crustal volumes of the continents and of oceanic and continental submarine plateaus. Earth and Planetary Science Letters, 92, 234 – 246. https://doi.org/10.1016/0012-821x(89)90049-6
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.