Show simple item record

Near‐Surface Geomechanical Properties and Weathering Characteristics Across a Tectonic and Climatic Gradient in the Central Nepal Himalaya

dc.contributor.authorMedwedeff, William G.
dc.contributor.authorClark, Marin K.
dc.contributor.authorZekkos, Dimitrios
dc.contributor.authorWest, A. Joshua
dc.contributor.authorChamlagain, Deepak
dc.date.accessioned2022-02-07T20:23:51Z
dc.date.available2023-03-07 15:23:48en
dc.date.available2022-02-07T20:23:51Z
dc.date.issued2022-02
dc.identifier.citationMedwedeff, William G.; Clark, Marin K.; Zekkos, Dimitrios; West, A. Joshua; Chamlagain, Deepak (2022). "Near‐Surface Geomechanical Properties and Weathering Characteristics Across a Tectonic and Climatic Gradient in the Central Nepal Himalaya." Journal of Geophysical Research: Earth Surface 127(2): n/a-n/a.
dc.identifier.issn2169-9003
dc.identifier.issn2169-9011
dc.identifier.urihttps://hdl.handle.net/2027.42/171564
dc.description.abstractShallow bedrock strength controls both landslide hazard and the rate and form of erosion, yet regional patterns in near‐surface mechanical properties are rarely known quantitatively due to the challenge in collecting in situ measurements. Here we present seismic and geomechanical characterizations of the shallow subsurface across the central Himalayan Range in Nepal. By pairing widely distributed 1D shear wave velocity surveys and engineering outcrop descriptions per the Geological Strength Index classification system, we evaluate landscape‐scale patterns in near‐surface mechanical characteristics and their relation to environmental factors known to affect rock strength. We find that shallow bedrock strength is more dependent on the degree of chemical and physical weathering, rather than the mineral and textural differences between the metamorphic lithologies found in the central Himalaya. Furthermore, weathering varies systematically with topography. Bedrock ridge top sites are highly weathered and have S‐wave seismic velocities and shear strength characteristics that are more typical of soils, whereas sites near valley bottoms tend to be less weathered and characterized by high S‐wave velocities and shear strength estimates typical of rock. Weathering on hillslopes is significantly more variable, resulting in S‐wave velocities that range between the ridge and channel endmembers. We speculate that variability in the hillslope environment may be partly explained by the episodic nature of mass wasting, which clears away weathered material where landslide scars are recent. These results underscore the mechanical heterogeneity in the shallow subsurface and highlight the need to account for variable bedrock weathering when estimating strength parameters for regional landslide hazard analysis.Plain Language SummaryRock strength controls the occurrence of landslides and the relationship between topography and erosion, but it is rarely known in natural environments because the most common measurement techniques are designed for individual site characterization and they are time‐consuming to apply over broad spatial scales. In this paper, we apply a unique sampling strategy consisting of two field‐based measurement techniques that are relatively portable and quick to apply repeatedly, and provide rock strength information over the scale of an outcrop (tens of meters). We apply our approach to an area of central Nepal where rock strength estimates are particularly important to know due to the high landslide hazard in this region. Our results show that rock strength is strongly controlled by the degree of weathering (i.e., the breakdown of rock by chemical and physical processes), which varies widely in Nepal depending on the local climate and topographic characteristics. In particular, we find that weathering is systematically greater (and thus rock strength is lower) on ridges compared to valley bottoms. On hillslopes between ridges and valleys, both weathering and rock strength are highly variable and difficult to predict, highlighting the need to further investigate regional variability in rock strength for future landslide hazard assessment.Key PointsWe employ seismic surveys and geomechanical rockmass characterizations to investigate regional patterns in rock strengthNo single variable explains the observed patterns in near‐surface mechanical properties within this tectonically active terrainWeathering characteristics associated with ridge‐to‐channel topography contributes order‐of‐magnitude variations in near‐surface strength
dc.publisherBuilding Seismic Safety Council, National Institute of Building Sciences
dc.publisherWiley Periodicals, Inc.
dc.subject.othercritical zone
dc.subject.otherchemical weathering
dc.subject.otherlandscape evolution
dc.subject.otheractive seismic
dc.subject.otherrock strength
dc.subject.otherlandslide hazard
dc.titleNear‐Surface Geomechanical Properties and Weathering Characteristics Across a Tectonic and Climatic Gradient in the Central Nepal Himalaya
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171564/1/jgrf21486_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171564/2/jgrf21486.pdf
dc.identifier.doi10.1029/2021JF006240
dc.identifier.sourceJournal of Geophysical Research: Earth Surface
dc.identifier.citedreferencePedrazas, M. A., Hahm, W. J., Huang, M. H., Dralle, D., Nelson, M. D., Breunig, R. E., et al. ( 2021 ). The relationship between topography, bedrock weathering, and water storage across a sequence of ridges and valleys. Journal of Geophysical Research: Earth Surface, 126 ( 44 ), 217126. https://doi.org/10.1029/2020jf005848
dc.identifier.citedreferencePasquet, S., & Bodet, L. ( 2017 ). SWIP: An integrated workflow for surface‐wave dispersion inversion and profiling. Geophysics, 82 ( 6 ), WB47 – WB61. https://doi.org/10.1190/geo2016-0625.1
dc.identifier.citedreferenceRempe, D. M., & Dietrich, W. E. ( 2014 ). A bottom‐up control on fresh‐bedrock topography under landscapes. Proceedings of the National Academy of Sciences, 111 ( 18 ), 6576 – 6581. https://doi.org/10.1073/pnas.1404763111
dc.identifier.citedreferenceRiebe, C. S., Hahm, W. J., & Brantley, S. L. ( 2017 ). Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42, 128 – 156. https://doi.org/10.1002/esp.4052
dc.identifier.citedreferenceRiebe, C. S., Kirchner, J. W., & Finkel, R. C. ( 2004 ). Sharp decrease in long‐term chemical weathering rates along an altitudinal transect. Earth and Planetary Science Letters, 218, 421 – 434. https://doi.org/10.1016/s0012-821x(03)00673-3
dc.identifier.citedreferenceRoback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., et al. ( 2018 ). The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301, 121 – 138. https://doi.org/10.1016/j.geomorph.2017.01.030
dc.identifier.citedreferenceSchickhoff, U. ( 2005 ). The upper timberline in the Himalayas, Hindu Kush and Karakorum: A Review of geographical and ecological aspects. In G. Broll, & B. Keplin (Eds.), Mountain ecosystems (pp. 275 – 354 ). Springer‐Verlag.
dc.identifier.citedreferenceSchmidt, K. M., & Montgomery, D. R. ( 1995 ). Limits to Relief. Science, 270 ( 5236 ), 617 – 620. https://doi.org/10.1126/science.270.5236.617
dc.identifier.citedreferenceSelby, M. J. ( 1980 ). A rock mass strength classification for geomorphic purposes: With tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 24, 31 – 51. https://doi.org/10.1127/zfg/24/1984/31
dc.identifier.citedreferenceShearer, P. ( 2009 ). Introduction to seismology. Cambridge University Press. https://doi.org/10.1017/CBO9780511841552
dc.identifier.citedreferenceShelling, D., & Arita, K. ( 1991 ). Thrust tectonics, crustal shortening, and the structure of the far eastern Nepal Himalaya. Tectonics, 10 ( 5 ), 851 – 862. https://doi.org/10.1029/91TC01011
dc.identifier.citedreferenceShobe, C. M., Hancock, G. S., Eppes, M. C., & Small, E. E. ( 2017 ). Field evidence for the influence of weathering on rock erodibility and channel form in bedrock rivers. Earth Surface Processes and Landforms, 42, 1997 – 2012. https://doi.org/10.1002/esp.4163
dc.identifier.citedreferenceShrestha, D., Singh, P., & Nakamura, K. ( 2012 ). Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. Journal of Geophysical Research: Atmospheres, 117 ( D22 ). https://doi.org/10.1029/2012jd018140
dc.identifier.citedreferenceShrestha, D. B., & Shrestha, J. N. ( 1986 ). Geological map of central NepalScale: 1:250,000. Department of Mines and Geology.
dc.identifier.citedreferenceSklar, L. S., & Dietrich, W. E. ( 2001 ). Sediment and rock strength controls on river incision into bedrock. Geology, 29 ( 12 ), 1087 – 1090. https://doi.org/10.1130/0091-7613(2001)029<1087:sarsco>2.0.co;2
dc.identifier.citedreferenceSlim, M., Perron, J. T., Martel, S. J., & Singha, K. ( 2015 ). Topographic stress and rock fracture: A two‐dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations. Earth Surface Processes and Landforms, 40, 512 – 529. https://doi.org/10.1002/esp.3646
dc.identifier.citedreferenceSt. Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., et al. ( 2015 ). Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350 ( 6260 ), 534 – 538. https://doi.org/10.1126/science.aab2210
dc.identifier.citedreferenceStokoe, K. H., & Santamarina, J. C. ( 2000 ). Seismic‐wave‐based testing in geotechnical engineering. In Proceedings International Conference on Geotechnical and Geological Engineering (Vol. 1, pp. 1490–1536), Technomic Publishing, Lancaster, PA.
dc.identifier.citedreferenceSutcliffe, D., Yu, H., & Sloan, S. ( 2004 ). Lower bound solutions for bearing capacity of jointed rock. Computers and Geotechnics, 31 ( 1 ), 23 – 36. https://doi.org/10.1016/j.compgeo.2003.11.001
dc.identifier.citedreferenceTakagi, R., Okada, T., Nakahara, H., Umino, N., & Hasegawa, A. ( 2012 ). Coseismic velocity change in and around the focal region of the 2008 Iwate‐Miyagi Nairiku earthquake. Journal of Geophysical Research: Solid Earth, 117 ( B6 ), B06315. https://doi.org/10.1029/2012jb009252
dc.identifier.citedreferenceTownsend, K. F., Clark, M. K., & Zekkos, D. ( 2021 ). Profiles of near‐surface rock mass strength across gradients in burial, erosion, and time. Journal of Geophysical Research: Earth Surface, 126 ( 4 ), e2020JF005694. https://doi.org/10.1029/2020jf005694
dc.identifier.citedreferenceTownsend, K. F., Gallen, S., & Clark, M. K. ( 2020 ). Quantifying near‐surface rock strength on a regional scale from hillslope stability models. Journal of Geophysical Research: Earth Surface, 125 ( 7 ), e2020JF005665. https://doi.org/10.1029/2020jf005665
dc.identifier.citedreferenceVon Voigtlander, J., Clark, M. K., Zekkos, D., Greenwood, W. W., Anderson, S. P., Anderson, R. S., & Godt, J. W. ( 2018 ). Strong variation in weathering of layered rock maintains hillslope‐scale strength under high precipitation. Earth Surface Processes and Landforms, 43, 1183 – 1194. https://doi.org/10.1002/esp.4290
dc.identifier.citedreferenceWang, H. Y., & Wang, S. Y. ( 2015 ). A new method for estimating vs (30) from a shallow shear‐wave velocity profile (depth <30 m). Bulletin of the Seismological Society of America, 105 ( 3 ), 1359 – 1370. https://doi.org/10.1785/0120140103
dc.identifier.citedreferenceWest, A. J., Galy, A., & Bickle, M. ( 2005 ). Tectonic and climate controls on silicate weathering. Earth and Planetary Science Letters, 235 ( 1–2 ), 211 – 228. https://doi.org/10.1016/j.epsl.2005.03.020
dc.identifier.citedreferenceWhite, A. F., & Blum, A. E. ( 1995 ). Effect of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59 ( 9 ), 1729 – 1747. https://doi.org/10.1016/0016-7037(95)00078-e
dc.identifier.citedreferenceYoon, S., & Rix, G. J. ( 2009 ). Near‐field effects on array‐based surface wave methods with active sources. Journal of Geotechnical and Geoenvironmental Engineering, 135 ( 3 ), 399 – 406. https://doi.org/10.1061/(asce)1090-0241(2009)135:3(399)
dc.identifier.citedreferenceAnderson, S. P., von Blanckenburg, F., & White, A. F. ( 2007 ). Physical and chemical controls on the critical zone. Elements, 3 ( 5 ), 315 – 319. https://doi.org/10.2113/gselements.3.5.315
dc.identifier.citedreferenceAnderson, R. S., Anderson, S. P., & Tucker, G. E. ( 2013 ). Rock damage and regolith transport by frost: An example of the climate modulation of the geomorphology of the critical zone. Earth Surface Processes and Landforms, 38 ( 3 ), 299 – 316. https://doi.org/10.1002/esp.3330
dc.identifier.citedreferenceAnderson, R. S., Rajaram, H., & Anderson, S. P. ( 2019 ). Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture. Hydrological Processes, 33, 4 – 19. https://doi.org/10.1002/hyp.13307
dc.identifier.citedreferenceAnderson, S. P., Anderson, R. S., & Tucker, G. E. ( 2012 ). Landscape scale linkages in critical zone evolution. Comptes Rendus Geoscience, 344 ( 11–12 ), 586 – 596. https://doi.org/10.1016/j.crte.2012.10.008
dc.identifier.citedreferenceAnderson, S. P., Hinckley, E. L., Kelly, P., & Langston, A. ( 2014 ). Variation in critical zone processes and architecture across slope aspects. Procedia Earth and Planetary Science, 10, 28 – 33. https://doi.org/10.1016/j.proeps.2014.08.006
dc.identifier.citedreferenceBefus, K. M., Sheehan, A. F., Leopold, M., Anderson, S. P., & Anderson, R. S. ( 2011 ). Seismic constraints on critical zone architecture, Boulder Creek Watershed, Front Range, Colorado. Vadose Zone Journal, 10, 915 – 927. https://doi.org/10.2136/vzj2010.0108
dc.identifier.citedreferenceBilham, R., Larson, K., & Freymueller, J. ( 1997 ). GPS measurements of present‐day convergence across the Nepal Himalaya. Nature, 386, 61 – 64. https://doi.org/10.1038/386061a0
dc.identifier.citedreferenceBluth, G. J., & Kump, L. R. ( 1994 ). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58 ( 10 ), 2341 – 2359. https://doi.org/10.1016/0016-7037(94)90015-9
dc.identifier.citedreferenceBookhagen, B., & Burbank, D. W. ( 2010 ). Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research, 115, F03019. https://doi.org/10.1029/2009JF001426
dc.identifier.citedreferenceBursztyn, N., Pederson, J. L., Tressler, C., Mackley, R. D., & Mitchell, K. J. ( 2015 ). Rock strength along a fluvial transect of the Colorado Plateau – Quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters, 429, 90 – 100. https://doi.org/10.1016/j.epsl.2015.07.042
dc.identifier.citedreferenceClarke, B. A., & Burbank, D. W. ( 2010 ). Bedrock fracturing, threshold hillslopes, and limits to the magnitude of bedrock landslides. Earth and Planetary Science Letters, 297 ( 3–4 ), 577 – 586. https://doi.org/10.1016/j.epsl.2010.07.011
dc.identifier.citedreferenceClarke, B. A., & Burbank, D. W. ( 2011 ). Quantifying bedrock‐fracture patterns within the shallow subsurface: Implications for rock mass strength, bedrock landslides, and erodibility. Journal of Geophysical Research: Earth Surface, 116 ( 4 ). https://doi.org/10.1029/2011JF001987
dc.identifier.citedreferenceDeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P., & Upreti, B. N. ( 2001 ). Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal. Tectonics, 20 ( 4 ), 487 – 509. https://doi.org/10.1029/2000tc001226
dc.identifier.citedreferenceDixon, J. L., Hartshorn, A. S., Heimsath, A. M., DiBiase, R. A., & Whipple, K. W. ( 2012 ). Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California. Earth and Planetary Science Letters, 323–324, 40 – 49. https://doi.org/10.1016/j.epsl.2012.01.010
dc.identifier.citedreferenceDuvall, A., Kirby, E., & Burbank, D. ( 2004 ). Tectonic and lithologic controls on bedrock channel profiles and processes in coastal California. Journal of Geophysical Research, 109, F03002. https://doi.org/10.1029/2003JF000086
dc.identifier.citedreferenceEppes, M. C., Hancock, G. S., Chen, X., Arey, J., Dewers, T., Huettenmoser, J., et al. ( 2018 ). Rates of subcritical cracking and long‐term rock erosion. Geology, 46 ( 11 ), 951 – 954. https://doi.org/10.1130/g45256.1
dc.identifier.citedreferenceFederal Emergency Management Agency (FEMA) ( 2004 ). NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part 1: Provisions (FEMA 450‐2), 2003 edition. Building Seismic Safety Council, National Institute of Building Sciences.
dc.identifier.citedreferenceFerrier, K. L., & Kirchner, J. W. ( 2008 ). Effects of physical erosion on chemical denudation rates: A numerical modeling study of soil‐mantled hillslopes. Earth and Planetary Science Letters, 272, 591 – 599. https://doi.org/10.1016/j.epsl.2008.05.024
dc.identifier.citedreferenceForte, A. M., Yanites, B. J., & Whipple, K. X. ( 2016 ). Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surface Processes and Landforms, 41 ( 12 ), 1736 – 1757. https://doi.org/10.1002/esp.3947
dc.identifier.citedreferenceFoti, S., Comina, C., Boiero, D., & Socco, L. V. ( 2009 ). Non‐uniqueness in surface‐wave inversion and consequences of seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29 ( 6 ), 982 – 993. https://doi.org/10.1016/j.soildyn.2008.11.004
dc.identifier.citedreferenceFrattini, P., & Crosta, G. B. ( 2013 ). The role of material properties and landscape morphology on landslide size distributions. Earth and Planetary Science Letters, 361, 310 – 319. https://doi.org/10.1016/j.epsl.2012.10.029
dc.identifier.citedreferenceGabet, E. J. ( 2007 ). A theoretical model coupling chemical weathering and physical erosion in landslide dominated landscapes. Earth and Planetary Science Letters, 264 ( 1–2 ), 259 – 265. https://doi.org/10.1016/j.epsl.2007.09.028
dc.identifier.citedreferenceGallen, S. F. ( 2018 ). Lithologic controls on landscape dynamics and aquatic species evolution in post‐orogenic mountains. Earth and Planetary Science Letters, 493, 150 – 160. https://doi.org/10.1016/j.epsl.2018.04.029
dc.identifier.citedreferenceGansser, A. ( 1964 ). Geology of the Himalayas (p. 289 ). Interscience.
dc.identifier.citedreferenceGarofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., et al. ( 2016 ). InterPACIFIC project: Comparison of invasive and non‐invasive methods for seismic site characterization, Part I: Intra‐comparison of surface wave methods. Soil Dynamics and Earthquake Engineering, 82, 222 – 240. https://doi.org/10.1016/j.soildyn.2015.12.010
dc.identifier.citedreferenceGilbert, G. K. ( 1877 ). Geology of the Henry Mountains (p. 160 ). US Geographical and Geological Survey.
dc.identifier.citedreferenceGrandin, R., Doin, M. P., Bollinger, L., Pinel‐Puyssegur, B., Ducret, G., Jolivet, R., & Sapkota, S. N. ( 2012 ). Long‐term growth of the Himalaya inferred from interseismic InSAR measurement. Geology, 40 ( 12 ), 1059 – 1062. https://doi.org/10.1130/g33154.1
dc.identifier.citedreferenceGreen, E. G., Dietrich, W. E., & Banfield, J. F. ( 2006 ). Quantification of chemical weathering rates across an actively eroding hillslope. Earth and Planetary Science Letters, 242 ( 1–2 ), 155 – 169. https://doi.org/10.1016/j.epsl.2005.11.039
dc.identifier.citedreferenceGreenwood, W., Zekkos, D., & Sahadewa, A. ( 2015 ). Spatial variation of shear wave velocity of waste materials from surface wave measurements. Journal of Environmental & Engineering Geophysics, 20 ( 4 ), 287 – 301. https://doi.org/10.2113/jeeg20.4.287
dc.identifier.citedreferenceGu, X., Rempe, D. M., Dietrich, W. E., West, A. J., Lin, T., Jin, L., & Brantley, S. L. ( 2020 ). Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochimica et Cosmochimoca Acta, 269, 63 – 100. https://doi.org/10.1016/j.gca.2019.09.044
dc.identifier.citedreferenceHeimsath, A. M., & Whipple, K. X. ( 2019 ). Strength matters: Resisting erosion across upland landscapes. Earth Surface Processes and Landforms, 44, 1748 – 1754. https://doi.org/10.1002/esp.4609
dc.identifier.citedreferenceHerman, F., Copeland, P., Avouac, J. P., Bollinger, L., Maheo, G., Le Fort, P., et al. ( 2010 ). Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. Journal of Geophysical Research: Solid Earth, 115 ( B6 ), B06407. https://doi.org/10.1029/2008jb006126
dc.identifier.citedreferenceHobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. ( 2016 ). Coseismic and post‐seismic velocity changes detected by passive image interferometry: Comparison of one great and five strong earthquakes in Japan. Geophysical Journal International, 205 ( 2 ), 1053 – 1073. https://doi.org/10.1093/gji/ggw066
dc.identifier.citedreferenceHodges, K. V., Hurtado, J. M., & Whipple, K. X. ( 2001 ). Southward extrusion of Tibetan crust and its effects on Himalayan tectonics. Tectonics, 20 ( 6 ), 799 – 809. https://doi.org/10.1029/2001tc001281
dc.identifier.citedreferenceHoek, E., & Brown, E. T. ( 1997 ). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 ( 8 ), 1165 – 1186. https://doi.org/10.1016/S1365-1609(97)80069-X
dc.identifier.citedreferenceHoek, E., & Brown, E. T. ( 2019 ). The Hoek‐Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11 ( 3 ), 445 – 463. https://doi.org/10.1016/j.jrmge.2018.08.001
dc.identifier.citedreferenceHoek, E., Carranza‐Torres, C., & Corkum, B. ( 2002 ). Hoek‐Brown failure critierion – 2002 edition. Proceedings of the Fifth North American Rock Mechanics Symposium (Vol. 1, pp. 267 – 273 ).
dc.identifier.citedreferenceHolbrook, W. S., Marcon, V., Bacon, A. R., Brantly, S. L., Carr, B. J., Flinchum, B. A., et al. ( 2019 ). Links between physical and chemical weathering inferred from a 65‐m‐deep borehole through Earth’s critical zone. Scientific Reports, 9, 4495. https://doi.org/10.1038/s41598-019-40819-9
dc.identifier.citedreferenceHuang, D., Li, Y. Q., Song, X., Xu, Q., & Pei, X. J. ( 2019 ). Insights into the catastrophic Xinmo rock avalanche in Maoxian County, China: Combined effects of historical earthquakes and landslide amplification. Engineering Geology, 258, 105158. https://doi.org/10.1016/j.enggeo.2019.105158
dc.identifier.citedreferenceJaky, J. ( 1944 ). The coefficient of earth pressure at rest. Journal of the Society of Hungarian Architects and Engineers, 1, 355 – 358
dc.identifier.citedreferenceJeandet, L., Steer, P., Lague, D., & Davy, P. ( 2019 ). Coulomb mechanics and relief constraints explain landslide size distribution. Geophysical Research Letters, 46, 4258 – 4266. https://doi.org/10.1029/2019gl082351
dc.identifier.citedreferenceKattel, D. B., Yao, T., Yang, K., Tian, L., Yang, G., & Joswiak, D. ( 2013 ). Temperature lapse rate in complex mountain terrain on the southern slope of the central Himalayas. Theoretical and Applied Climatology, 113, 671 – 682. https://doi.org/10.1007/s00704-012-0816-6
dc.identifier.citedreferenceKump, R. L., Brantley, S., & Arthur, M. A. ( 2000 ). Chemical weathering, atmospheric CO2, and climate. Annual Review of Earth and Planetary Sciences, 28, 611 – 667. https://doi.org/10.1146/annurev.earth.28.1.611
dc.identifier.citedreferenceLe Fort, P. ( 1975 ). Himalayas: The collided range present knowledge of the continental arc. American Journal of Science, 275 ( A ), 1 – 44.
dc.identifier.citedreferenceLebedeva, M. I., & Brantley, S. L. ( 2013 ). Exploring geochemical controls on weathering and erosion of convex hillslopes: Beyond the empirical regolith production function. Earth Surface Processes and Landforms, 38 ( 15 ), 1793 – 1807. https://doi.org/10.1002/esp.3424
dc.identifier.citedreferenceLeone, J. D., Holbrook, W. S., Riebe, C. S., Chorover, J., Ferré, T. P., Carr, B. J., & Callahan, R. P. ( 2020 ). Strong slope‐aspect control of regolith thickness by bedrock foliation. Earth Surface Processes and Landforms, 45 ( 12 ), 2998 – 3010. https://doi.org/10.1002/esp.4947
dc.identifier.citedreferenceMacfarlane, A. M. ( 1993 ). Chronology of the tectonic events in the crystalline core of the Himalaya, Langtang National park, Central Nepal. Tectonics, 12 ( 4 ), 1004 – 1025. https://doi.org/10.1029/93tc00916
dc.identifier.citedreferenceMarc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner, S., & Hovius, N. ( 2019 ). Long‐term erosion of the Nepal Himalayas by bedrock landsliding: The role of monsoons, earthquakes, and giant landslides. Earth Surface Dynamics, 7, 107 – 128. https://doi.org/10.5194/esurf-7-107-2019
dc.identifier.citedreferenceMarc, O., Sens‐Schonfelder, C., Illien, L., Meunier, P., Hobiger, M., Sawazaki, K., et al. ( 2021 ). Toward using seismic interferometry to quantify landscape mechanical variations after earthquakes. Bulletin of the Seismological Society of America, 111 ( 3 ), 1631 – 1649. https://doi.org/10.1785/0120200264
dc.identifier.citedreferenceMayne, P. W., & Kulhawy, F. H. ( 1982 ). K0‐OCR relationship in soil. Journal of the Soil Mechanics and Foundations Division, 108 ( 6 ), 851 – 872. https://doi.org/10.1061/ajgeb6.0001306
dc.identifier.citedreferenceMedwedeff, W. G., Clark, M. K., Zekkos, D., & West, A. J. ( 2020 ). Characteristic landslide distributions: An investigation of landscape controls on landslide size. Earth and Planetary Science Letters, 539. https://doi.org/10.1016/j.epsl.2020.116203
dc.identifier.citedreferenceMiller, D. J., & Dunne, T. ( 1996 ). Topographic perturbations of regional stresses and consequent bedrock fracturing. Journal of Geophysical Research: Solid Earth, 101 ( B11 ), 25523 – 25536. https://doi.org/10.1029/96jb02531
dc.identifier.citedreferenceMontgomery, D. R., & Brandon, M. T. ( 2002 ). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201 ( 3–4 ), 481 – 489. https://doi.org/10.1016/s0012-821x(02)00725-2
dc.identifier.citedreferenceMoon, S., Perron, J. T., Martel, S. J., Holbrook, W. S., & St. Clair, J. ( 2017 ). A model of three‐dimensional topographic stresses with implications for bedrock fractures, surface processes, and landscape evolution. Journal of Geophysical Research: Earth Surface, 122 ( 4 ), 823 – 846. https://doi.org/10.1002/2016JF004155
dc.identifier.citedreferenceNeely, A. B., DiBiase, R. A., Corbett, L. B., Bierman, P. R., & Caffee, M. W. ( 2019 ). Bedrock fracture density controls on hillslope erodibility in steep, rocky landscapes with patchy soil cover, southern California, USA. Earth and Planetary Science Letters, 522, 186 – 197. https://doi.org/10.1016/j.epsl.2019.06.011
dc.identifier.citedreferenceO’Neill, A., & Matsuoka, T. ( 2005 ). Dominant higher Surface‐wave Modes and possible inversion pitfalls. Journal of Environmental & Engineering Geophysics, 10, 185 – 201. https://doi.org/10.2113/JEEG10.2.185
dc.identifier.citedreferenceOwen, L. A., & Benn, D. I. ( 2005 ). Equilibrium‐line altitudes of the last glacial Maximum for the Himalaya and Tibet: An assessment and evaluation of results. Quaternary International, 138–139, 55 – 78. https://doi.org/10.1016/j.quaint.2005.02.006
dc.identifier.citedreferencePark, C. B., Miller, R. D., & Xia, J. ( 1999a ). Multichannel analysis of surface waves. Geophysics, 64 ( 3 ), 800 – 808. https://doi.org/10.1190/1.1444590
dc.identifier.citedreferencePark, C. B., Miller, R. D., & Xia, J. ( 1999b ). Multimodal analysis of high frequency surface waves. Proceedings of the 12th EEGS symposium on the application of geophysics to engineering and environmental problems. https://doi.org/10.3997/2214-4609-pdb.202.1999_013
dc.identifier.citedreferenceParrish, R. R., & Hodges, V. ( 1996 ). Isotopic constraints on the age and provenance of the lesser and greater Himalayan sequences, Nepalese Himalaya. GSA Bulletin, 108 ( 7 ), 904 – 911. https://doi.org/10.1130/0016-7606(1996)108<0904:icotaa>2.3.co;2
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.