Show simple item record

Multivariate log‐contrast regression with sub‐compositional predictors: Testing the association between preterm infants’ gut microbiome and neurobehavioral outcomes

dc.contributor.authorLiu, Xiaokang
dc.contributor.authorCong, Xiaomei
dc.contributor.authorLi, Gen
dc.contributor.authorMaas, Kendra
dc.contributor.authorChen, Kun
dc.date.accessioned2022-02-07T20:25:39Z
dc.date.available2023-03-07 15:25:37en
dc.date.available2022-02-07T20:25:39Z
dc.date.issued2022-02-10
dc.identifier.citationLiu, Xiaokang; Cong, Xiaomei; Li, Gen; Maas, Kendra; Chen, Kun (2022). "Multivariate log‐contrast regression with sub‐compositional predictors: Testing the association between preterm infants’ gut microbiome and neurobehavioral outcomes." Statistics in Medicine 41(3): 580-594.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/171606
dc.publisherWiley Periodicals, Inc.
dc.publisherBlackburn Press
dc.subject.othernuclear norm penalization
dc.subject.othercompositional data
dc.subject.othergroup inference
dc.subject.otherintegrative multivariate analysis
dc.subject.othermulti‐view learning
dc.titleMultivariate log‐contrast regression with sub‐compositional predictors: Testing the association between preterm infants’ gut microbiome and neurobehavioral outcomes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171606/1/sim9273.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171606/2/sim9273-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171606/3/sim9273_am.pdf
dc.identifier.doi10.1002/sim.9273
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceNegahban S, Ravikumar P, Wainwright MJ, Yu B. A unified framework for high‐dimensional analysis of M ‐estimators with decomposable regularizers. Stat Sci. 2012; 27 ( 4 ): 538 ‐ 557.
dc.identifier.citedreferenceWang H, Wang Z, Wang S. Sliced inverse regression method for multivariate compositional data modeling. Stat Pap. 2021; 62: 361 ‐ 393.
dc.identifier.citedreferenceMaity A, Zhao J, Sullivan PF, Tzeng JY. Inference on phenotype‐specific effects of genes using multivariate kernel machine regression. Genet Epidemiol. 2018; 42 ( 1 ): 64 ‐ 79.
dc.identifier.citedreferenceZhan X, Zhao N, Plantinga A, et al. Powerful genetic association analysis for common or rare variants with high‐dimensional structured traits. Genetics. 2017; 206 ( 4 ): 1779 ‐ 1790.
dc.identifier.citedreferenceDavenport CA, Maity A, Sullivan PF, Tzeng JY. A powerful test for snp effects on multivariate binary outcomes using kernel machine regression. Stat Biosci. 2018; 10 ( 1 ): 117 ‐ 138.
dc.identifier.citedreferenceZhan X, Tong X, Zhao N, Maity A, Wu MC, Chen J. A small‐sample multivariate kernel machine test for microbiome association studies. Genet Epidemiol. 2017; 41 ( 3 ): 210 ‐ 220.
dc.identifier.citedreferenceZhan X, Plantinga A, Zhao N, Wu MC. A fast small‐sample kernel independence test for microbiome community‐level association analysis. Biometrics. 2017; 73 ( 4 ): 1453 ‐ 1463.
dc.identifier.citedreferenceLi G, Liu X, Chen K. Integrative multi‐view regression: bridging group‐sparse and low‐rank models. Biometrics. 2019; 75 ( 2 ): 593 ‐ 602.
dc.identifier.citedreferenceAitchison J. Principal component analysis of compositional data. Biometrika. 1983; 70 ( 1 ): 57 ‐ 65.
dc.identifier.citedreferenceAitchison J, Egozcue JJ. Compositional data analysis: where are we and where should we be heading? Math Geol. 2005; 37: 829 ‐ 850.
dc.identifier.citedreferenceSun T, Zhang CH. Scaled sparse linear regression. Biometrika. 2012; 99 ( 4 ): 879 ‐ 898.
dc.identifier.citedreferenceNegahban S, Wainwright MJ. Estimation of (near) low‐rank matrices with noise and high‐dimensional scaling. Ann Stat. 2011; 39 ( 2 ): 1069 ‐ 1097.
dc.identifier.citedreferenceTomassi D, Forzani L, Duarte S, Pfeiffer RM. Sufficient dimension reduction for compositional data. Biostatistics. 2021; 22 ( 4 ): 687 ‐ 705.
dc.identifier.citedreferenceMitra R, Zhang CH. The benefit of group sparsity in group inference with de‐biased scaled group Lasso. Electron J Stat. 2016; 10 ( 2 ): 1829 ‐ 1873.
dc.identifier.citedreferenceHuang J, Zhang T. The benefit of group sparsity. Ann Stat. 2010; 38 ( 4 ): 1978 ‐ 2004.
dc.identifier.citedreferenceZhang CH, Zhang SS. Confidence intervals for low dimensional parameters in high dimensional linear models. J R Stat Soc Ser B Stat Methodol. 2014; 76 ( 1 ): 217 ‐ 242.
dc.identifier.citedreferenceRoy SN. On a heuristic method of test construction and its use in multivariate analysis. Ann Math Stat. 1953; 24 ( 2 ): 220 ‐ 238.
dc.identifier.citedreferenceWilson DJ. The harmonic mean p‐value for combining dependent tests. Proc Natl Acad Sci. 2019; 116 ( 4 ): 1195 ‐ 1200.
dc.identifier.citedreferenceSchwarz G. Estimating the dimension of a model. Ann Stat. 1978; 6 ( 2 ): 461 ‐ 464.
dc.identifier.citedreferenceBomar L, Maltz M, Colston S, Graf J. Directed culturing of microorganisms using metatranscriptomics. MBio. 2011; 2 ( 2 ): e00012 ‐ e00011.
dc.identifier.citedreferenceCong X, Judge M, Xu W, et al. Influence of infant feeding type on gut microbiome development in hospitalized preterm infants. Nurs Res. 2017; 66 ( 2 ): 123 ‐ 133.
dc.identifier.citedreferenceLester BM, Tronick EZ. The neonatal intensive care unit network neurobehavioral scale procedures. Pediatrics. 2004; 113 ( Suppl 2 ): 641 ‐ 667.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995; 57 ( 1 ): 289 ‐ 300.
dc.identifier.citedreferenceNuriel‐Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol. 2016; 7: 1031.
dc.identifier.citedreferenceKoenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci. 2011; 108 ( Suppl 1 ): 4578 ‐ 4585.
dc.identifier.citedreferenceCong X, Xu W, Janton S, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS One. 2016; 11 ( 4 ): e0152751.
dc.identifier.citedreferenceLabus J, Hsiao E, Tap J, et al. Clostridia from the gut microbiome are associated with brain functional connectivity and evoked symptoms in IBS. Gastroenterologia. 2017; 152 ( 5 ): S40.
dc.identifier.citedreferenceRudi K, Ricanek P, Tannæs T, Brackmann S, Perminow G, Vatn MH. Analysing tap‐water from households of patients with inflammatory bowel disease in Norway. In: Hoorfar J, ed. Case Studies in Food Safety and Authenticity. Cambridge, England: Woodhead Publishing; 2012: 130 ‐ 137.
dc.identifier.citedreferenceGillespie SH. Medical Microbiology Illustrated. Oxford, UK: Butterworth‐Heinemann; 1994.
dc.identifier.citedreferenceHanning I, Diaz‐Sanchez S. The functionality of the gastrointestinal microbiome in non‐human animals. Microbiome. 2015; 3: 51.
dc.identifier.citedreferenceFanaroff AA, Hack M, Walsh MC. The NICHD neonatal research network: changes in practice and outcomes during the first 15 years. Semin Perinatol. 2003; 27 ( 4 ): 281 ‐ 287.
dc.identifier.citedreferenceStoll BJ, Hansen NI, Bell EF, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010; 126 ( 3 ): 443 ‐ 456.
dc.identifier.citedreferenceMwaniki MK, Atieno M, Lawn JE, Newton CR. Long‐term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012; 379 ( 9814 ): 445 ‐ 452.
dc.identifier.citedreferenceCarabotti M, Scirocco A, Maselli MA, Severi C. The gut‐brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015; 28 ( 2 ): 203 ‐ 209.
dc.identifier.citedreferenceDinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012; 37 ( 9 ): 1369 ‐ 1378.
dc.identifier.citedreferenceCong X, Xu W, Romisher R, et al. Microbiome: gut microbiome and infant health: brain‐gut‐microbiota axis and host genetic factors. Yale J Biol Med. 2016; 89 ( 3 ): 299 ‐ 308.
dc.identifier.citedreferenceAitchison J. The statistical analysis of compositional data. J R Stat Soc Ser B Stat Methodol. 1982; 44 ( 2 ): 139 ‐ 160.
dc.identifier.citedreferenceAitchison J. The Statistical Analysis of Compositional Data. Caldwell, NJ: Blackburn Press; 2003.
dc.identifier.citedreferenceAitchison J, Bacon‐shone J. Log contrast models for experiments with mixtures. Biometrika. 1984; 71 ( 2 ): 323 ‐ 330.
dc.identifier.citedreferenceLi H. Microbiome, metagenomics, and high‐dimensional compositional data analysis. Annu Rev Stat Appl. 2015; 2 ( 1 ): 73 ‐ 94.
dc.identifier.citedreferenceLin W, Shi P, Feng R, Li H. Variable selection in regression with compositional covariates. Biometrika. 2014; 101 ( 4 ): 785 ‐ 797.
dc.identifier.citedreferenceWang T, Zhao H. Structured subcomposition selection in regression and its application to microbiome data analysis. Ann Appl Stat. 2017; 11 ( 2 ): 771 ‐ 791.
dc.identifier.citedreferenceSun Z, Xu W, Cong X, Li G, Chen K. Log‐contrast regression with functional compositional predictors: linking preterm infants’ gut microbiome trajectories to neurobehavioral outcome. Ann Appl Stat. 2020; 14 ( 3 ): 1535 ‐ 1556.
dc.identifier.citedreferenceCombettes PL, Müller CL. Regression models for compositional data: General log‐contrast formulations, proximal optimization, and microbiome data applications. Stat Biosci. 2021; 13: 217 ‐ 242.
dc.identifier.citedreferenceShi P, Zhang A, Li H. Regression analysis for microbiome compositional data. Ann Appl Stat. 2016; 10 ( 2 ): 1019 ‐ 1040.
dc.identifier.citedreferenceKoh H, Blaser MJ, Li H. A powerful microbiome‐based association test and a microbial taxa discovery framework for comprehensive association mapping. Microbiome. 2017; 5 ( 1 ): 45.
dc.identifier.citedreferenceMaity A, Sullivan PF, Tzeng JI. Multivariate phenotype association analysis by marker‐set kernel machine regression. Genet Epidemiol. 2012; 36 ( 7 ): 686 ‐ 695.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.