Show simple item record

Viscosity of Fe‐Ni‐C Liquids up to Core Pressures and Implications for Dynamics of Planetary Cores

dc.contributor.authorZhu, Feng
dc.contributor.authorLai, Xiaojing
dc.contributor.authorWang, Jianwei
dc.contributor.authorWilliams, Quentin
dc.contributor.authorLiu, Jiachao
dc.contributor.authorKono, Yoshio
dc.contributor.authorChen, Bin
dc.date.accessioned2022-03-07T03:12:16Z
dc.date.available2023-03-06 22:12:15en
dc.date.available2022-03-07T03:12:16Z
dc.date.issued2022-02-28
dc.identifier.citationZhu, Feng; Lai, Xiaojing; Wang, Jianwei; Williams, Quentin; Liu, Jiachao; Kono, Yoshio; Chen, Bin (2022). "Viscosity of Fe‐Ni‐C Liquids up to Core Pressures and Implications for Dynamics of Planetary Cores." Geophysical Research Letters 49(4): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/171851
dc.description.abstractThe viscosity of iron alloy liquids is the key for the core dynamo and core‐mantle differentiation of terrestrial bodies. Here we measured the viscosity of Fe‐Ni‐C liquids up to 7 GPa using the floating sphere viscometry method and up to 330 GPa using first‐principles calculations. We found a viscosity increase at ∼3–5 GPa, coincident with a structural transition in the liquids. After the transition, the viscosity reaches ∼14–27 mPa·s, a factor of 2–4 higher than that of Fe and Fe‐S liquids. Our computational results from 5 to 330 GPa also indicate a high viscosity of the Fe‐Ni‐C liquids. For a carbon‐rich core in large terrestrial body, the level of turbulence in the outer core would be lessened approaching the inner core boundary. It is also anticipated that Fe‐Ni‐C liquids would percolate in Earth’s deep silicate mantle at a much slower speed than Fe and Fe‐S liquids.Plain Language SummaryLiquid cores of Earth and other terrestrial planets are composed of Fe‐Ni metal with certain amounts of light elements (LE) such as H, C, O, Si, and S. Located at the center of the planets, these cores are under extremely high‐pressure high‐temperature conditions. The viscosity of Fe‐Ni‐LE liquids is the key to understanding the formation and life duration of core dynamo. In the present study, we used experimental and theoretical methods to study the viscosity of Fe‐Ni‐C liquid, a candidate liquid core component, at high pressures and temperatures. Our results show that the viscosity of Fe‐Ni‐C liquids first increase quickly at 3–5 GPa (GPa), and then increases slowly up to Earth’s core conditions at 330 GPa and 5530 K. The fast growth of viscosity concurs with a liquid structure transition at around 5 GPa, around the core pressure ranges of the Moon, Mercury, and several Jupiter’s satellites, and might result in difference in viscous forces in core dynamos between those cores with pressures above and below transition pressure. The viscosity of Fe‐Ni‐C liquids at Earth’s core conditions is higher than Fe and Fe‐S liquids from previous studies, which provides new clues for the operation of geodynamo in a carbon‐rich outer core.Key PointsExperimental and computational determinations of viscosity of Fe‐Ni‐C liquids up to core pressuresViscosities of Fe‐Ni‐C liquids increase by a factor of ∼2 at 3–5 GPa at which a liquid structural transition occursFe‐Ni‐C liquid has higher viscosity than Fe and Fe‐S liquid, causing difference in core dynamo and percolative core formation
dc.publisherAGU Reference Shelf
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfirst‐principles molecular dynamics
dc.subject.otherplanetary cores
dc.subject.otherParis‐Edinburgh press
dc.subject.otherhigh‐pressure high‐temperature
dc.subject.otherFe‐Ni‐C liquids
dc.titleViscosity of Fe‐Ni‐C Liquids up to Core Pressures and Implications for Dynamics of Planetary Cores
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171851/1/grl63767_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171851/2/grl63767.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171851/3/2021GL095991-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2021GL095991
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePrescher, C., Dubrovinsky, L., Bykova, E., Kupenko, I., Glazyrin, K., Kantor, A., et al. ( 2015 ). High Poisson’s ratio of Earth’s inner core explained by carbon alloying. Nature Geoscience, 8 ( 3 ), 220 – 223. https://doi.org/10.1038/ngeo2370
dc.identifier.citedreferenceKing, E. M., & Buffett, B. A. ( 2013 ). Flow speeds and length scales in geodynamo models: The role of viscosity. Earth and Planetary Science Letters, 371, 156 – 162. https://doi.org/10.1016/j.epsl.2013.04.001
dc.identifier.citedreferenceKleine, T., Münker, C., Mezger, K., & Palme, H. ( 2002 ). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418 ( 6901 ), 952 – 955. https://doi.org/10.1038/nature00982
dc.identifier.citedreferenceTerasaki, H., Suzuki, A., Ohtani, E., Nishida, K., Sakamaki, T., & Funakoshi, K.‐i. ( 2006 ). Effect of pressure on the viscosity of Fe‐S and Fe‐C liquids up to 16 GPa. Geophysical Research Letters, 33 ( 22 ). https://doi.org/10.1029/2006gl027147
dc.identifier.citedreferenceKono, Y., Park, C., Kenney‐Benson, C., Shen, G., & Wang, Y. ( 2014 ). Toward comprehensive studies of liquids at high pressures and high temperatures: Combined structure, elastic wave velocity, and viscosity measurements in the Paris–Edinburgh cell. Physics of the Earth and Planetary Interiors, 228, 269 – 280. https://doi.org/10.1016/j.pepi.2013.09.006
dc.identifier.citedreferenceKresse, G., & Furthmüller, J. ( 1996 ). Efficiency of ab‐initio total energy calculations for metals and semiconductors using a plane‐wave basis set. Computational Materials Science, 6 ( 1 ), 15 – 50. https://doi.org/10.1016/0927-0256(96)00008-0
dc.identifier.citedreferenceKronrod, V., & Kuskov, O. ( 2006 ). Chemical differentiation of the Galilean satellites of Jupiter: 4. Isochemical models for the compositions of Io, Europa, and Ganymede. Geochemistry International, 44 ( 6 ), 529 – 546. https://doi.org/10.1134/s0016702906060012
dc.identifier.citedreferenceLai, X., Chen, B., Wang, J., Kono, Y., & Zhu, F. ( 2017 ). Polyamorphic transformations in Fe‐Ni‐C liquids: Implications for chemical evolution of terrestrial Planets. Journal of Geophysical Research: Solid Earth, 122 ( 12 ), 9745 – 9754. https://doi.org/10.1002/2017jb014835
dc.identifier.citedreferenceLeBlanc, G., & Secco, R. ( 1996 ). Viscosity of an Fe‐S liquid up to 1300° C and 5 GPa. Geophysical Research Letters, 23 ( 3 ), 213 – 216. https://doi.org/10.1029/96gl00216
dc.identifier.citedreferenceLucas, L.‐D. ( 1964 ). Viscosite du fer pur et du systeme Fe‐C jusqu’a 4.8% C en poids. Comptes Rendus de l’Académie des Sciences, 259, 3760 – 3767.
dc.identifier.citedreferenceMcKenzie, D. ( 1989 ). Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95 ( 1–2 ), 53 – 72. https://doi.org/10.1016/0012-821x(89)90167-2
dc.identifier.citedreferenceNakajima, Y., Imada, S., Hirose, K., Komabayashi, T., Ozawa, H., Tateno, S., et al. ( 2015 ). Carbon‐depleted outer core revealed by sound velocity measurements of liquid iron–carbon alloy. Nature Communications, 6, 8942. https://doi.org/10.1038/ncomms9942
dc.identifier.citedreferenceNakajima, Y., Takahashi, E., Suzuki, T., & Funakoshi, K.‐i. ( 2009 ). Carbon in the core revisited. Physics of the Earth and Planetary Interiors, 174 ( 1 ), 202 – 211. https://doi.org/10.1016/j.pepi.2008.05.014
dc.identifier.citedreferencePerdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. ( 1992 ). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46 ( 11 ), 6671 – 6687. https://doi.org/10.1103/physrevb.46.6671
dc.identifier.citedreferencePerrillat, J.‐P., Mezouar, M., Garbarino, G., & Bauchau, S. ( 2010 ). In situ viscometry of high‐pressure melts in the Paris–edinburgh cell: Application to liquid FeS. High Pressure Research, 30 ( 3 ), 415 – 423. https://doi.org/10.1080/08957959.2010.494844
dc.identifier.citedreferenceRutter, M. D., Secco, R. A., Liu, H., Uchida, T., Rivers, M. L., Sutton, S. R., & Wang, Y. ( 2002 ). Viscosity of liquid Fe at high pressure. Physical Review B, 66 ( 6 ), 060102. https://doi.org/10.1103/physrevb.66.060102
dc.identifier.citedreferenceRutter, M. D., Secco, R. A., Uchida, T., Liu, H., Wang, Y., Rivers, M. L., & Sutton, S. R. ( 2002 ). Towards evaluating the viscosity of the Earth’s outer core: An experimental high pressure study of liquid Fe‐S (8.5 wt.% S). Geophysical Research Letters, 29 ( 8 ), 58 – 515854.
dc.identifier.citedreferenceSanloup, C., Guyot, F., Gillet, P., Fiquet, G., Hemley, R., Mezouar, M., & Martinez, I. ( 2000 ). Structural changes in liquid Fe at high pressures and high temperatures from synchrotron X‐ray diffraction. EPL (Europhysics Letters), 52 ( 2 ), 151 – 157. https://doi.org/10.1209/epl/i2000-00417-3
dc.identifier.citedreferenceSchwaiger, T., Gastine, T., & Aubert, J. ( 2019 ). Force balance in numerical geodynamo simulations: A systematic study. Geophysical Journal International, 219 ( Supplement_1 ), S101 – S114. https://doi.org/10.1093/gji/ggz192
dc.identifier.citedreferenceSecco, R., Rutter, M., Balog, S., Liu, H., Rubie, D., Uchida, T., et al. ( 2002 ). Viscosity and density of Fe–S liquids at high pressures. Journal of Physics: Condensed Matter, 14 ( 44 ), 11325 – 11330. https://doi.org/10.1088/0953-8984/14/44/476
dc.identifier.citedreferenceShibazaki, Y., Kono, Y., & Fei, Y. ( 2015 ). Microscopic structural change in a liquid Fe‐C alloy of ∼5 GPa. Geophysical Research Letters, 42 ( 13 ), 5236 – 5242. https://doi.org/10.1002/2015gl064271
dc.identifier.citedreferenceTerasaki, H., Kato, T., Urakawa, S., Funakoshi, K., Sato, K., Suzuki, A., & Okada, T. ( 2002 ). Viscosity change and structural transition of molten Fe at 5 GPa. Geophysical Research Letters, 29 ( 8 ), 68 – 16863. https://doi.org/10.1029/2001gl014321
dc.identifier.citedreferenceTerasaki, H., Kato, T., Urakawa, S., Funakoshi, K.‐i., Suzuki, A., Okada, T., et al. ( 2001 ). The effect of temperature, pressure, and sulfur content on viscosity of the Fe–FeS melt. Earth and Planetary Science Letters, 190 ( 1–2 ), 93 – 101. https://doi.org/10.1016/s0012-821x(01)00374-0
dc.identifier.citedreferenceTerasaki, H., Nishida, K., Shibazaki, Y., Sakamaki, T., Suzuki, A., Ohtani, E., & Kikegawa, T. ( 2010 ). Density measurement of Fe 3 C liquid using X‐ray absorption image up to 10 GPa and effect of light elements on compressibility of liquid iron. Journal of Geophysical Research, 115 ( B6 ), B06207. https://doi.org/10.1029/2009jb006905
dc.identifier.citedreferenceUrakawa, S., Terasaki, H., Funakoshi, K., Kato, T., & Suzuki, A. ( 2001 ). Radiographic study on the viscosity of the Fe‐FeS melts at the pressure of 5 to 7 GPa. American Mineralogist, 86 ( 4 ), 578 – 582. https://doi.org/10.2138/am-2001-0420
dc.identifier.citedreferenceWang, J., Chen, B., Williams, Q., & Manghnani, M. ( 2019 ). Short‐and intermediate‐range structure and dynamics of Fe‐Ni‐C liquid under compression. Frontiers of Earth Science, 7, 258. https://doi.org/10.3389/feart.2019.00258
dc.identifier.citedreferenceWood, B. J. ( 1993 ). Carbon in the core. Earth and Planetary Science Letters, 117 ( 3–4 ), 593 – 607. https://doi.org/10.1016/0012-821x(93)90105-i
dc.identifier.citedreferenceZhu, F., Lai, X., Wang, J., Amulele, G., Kono, Y., Shen, G., et al. ( 2021 ). Density of Fe‐Ni‐C liquids at high pressures and implications for liquid cores of Earth and the Moon. Journal of Geophysical Research: Solid Earth, 126 ( 3 ), e2020JB021089. https://doi.org/10.1029/2020jb021089
dc.identifier.citedreferenceKono, Y., Kenney‐Benson, C., Shibazaki, Y., Park, C., Shen, G., & Wang, Y. ( 2015 ). High‐pressure viscosity of liquid Fe and FeS revisited by falling sphere viscometry using ultrafast X‐ray imaging. Physics of the Earth and Planetary Interiors, 241, 57 – 64. https://doi.org/10.1016/j.pepi.2015.02.006
dc.identifier.citedreferenceAlfè, D., & Gillan, M. J. ( 1998 ). First‐principles calculation of transport coefficients. Physical Review Letters, 81 ( 23 ), 5161.
dc.identifier.citedreferenceAnderson, W. W., & Ahrens, T. J. ( 1994 ). An equation of state for liquid iron and implications for the Earth’s core. Journal of Geophysical Research, 99 ( B3 ), 4273 – 4284. https://doi.org/10.1029/93jb03158
dc.identifier.citedreferenceBlöchl, P. E. ( 1994 ). Projector augmented‐wave method. Physical Review B, 50 ( 24 ), 17953.
dc.identifier.citedreferenceCao, Q. L., & Wang, P. P. ( 2017 ). Stokes‐Einstein relation in liquid iron‐nickel alloy up to 300 GPa. Journal of Geophysical Research: Solid Earth, 122 ( 5 ), 3351 – 3363. https://doi.org/10.1002/2016jb013878
dc.identifier.citedreferenceChen, B., Li, Z., Zhang, D., Liu, J., Hu, M. Y., Zhao, J., et al. ( 2014 ). Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe 7 C 3. Proceedings of the National Academy of Sciences, 111 ( 50 ), 17755 – 17758. https://doi.org/10.1073/pnas.1411154111
dc.identifier.citedreferenceChristensen, U. R., & Aubert, J. ( 2006 ). Scaling properties of convection‐driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International, 166 ( 1 ), 97 – 114. https://doi.org/10.1111/j.1365-246x.2006.03009.x
dc.identifier.citedreferencede Wijs, G. A., Kresse, G., Vočadlo, L., Dobson, D., Alfe, D., Gillan, M. J., & Price, G. D. ( 1998 ). The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature, 392 ( 6678 ), 805 – 807. https://doi.org/10.1038/33905
dc.identifier.citedreferenceDobson, D. P., Crichton, W. A., VOCadlo, L., Jones, A. P., Wang, Y., Uchida, T., et al. ( 2000 ). In situ measurement of viscosity of liquids in the Fe‐FeS system at high pressures and temperatures. American Mineralogist, 85 ( 11–12 ), 1838 – 1842. https://doi.org/10.2138/am-2000-11-1231
dc.identifier.citedreferenceEgry, I. ( 1993 ). On the relation between surface tension and viscosity for liquid metals. Scripta Metallurgica et Materialia, 28 ( 10 ). https://doi.org/10.1016/0956-716x(93)90467-7
dc.identifier.citedreferenceFaul, U. H. ( 1997 ). Permeability of partially molten upper mantle rocks from experiments and percolation theory. Journal of Geophysical Research, 102 ( B5 ), 10299 – 10311. https://doi.org/10.1029/96jb03460
dc.identifier.citedreferenceFei, Y. ( 1995 ). Thermal expansion. In Mineral Physics and Crystallography, A Handbook of Physical Constants, (Vol. 2, pp. 29 – 44 ). AGU Reference Shelf.
dc.identifier.citedreferenceGarcia, R. F., Gagnepain‐Beyneix, J., Chevrot, S., & Lognonné, P. ( 2012 ). Erratum to “very preliminary reference moon model”. In R. F. J. GarciaGagnepain‐Beyneix, & S. Chevrot (Eds.), Physics of the Earth and Planetary Interiors. (Vol. 202, pp. 89 – 91 ). https://doi.org/10.1016/j.pepi.2012.03.009
dc.identifier.citedreferenceHauck, S. A., Margot, J. L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., et al. ( 2013 ). The curious case of Mercury’s internal structure. Journal of Geophysical Research: Planets, 118 ( 6 ), 1204 – 1220. https://doi.org/10.1002/jgre.20091
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.