Show simple item record

A spatial Bayesian latent factor model for image-on-image regression

dc.contributor.authorGuo, Cui
dc.contributor.authorKang, Jian
dc.contributor.authorJohnson, Timothy D.
dc.date.accessioned2022-04-08T18:02:02Z
dc.date.available2023-04-08 14:02:01en
dc.date.available2022-04-08T18:02:02Z
dc.date.issued2022-03
dc.identifier.citationGuo, Cui; Kang, Jian; Johnson, Timothy D. (2022). "A spatial Bayesian latent factor model for image-on-image regression." Biometrics 78(1): 72-84.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/171979
dc.description.abstractImage-on-image regression analysis, using images to predict images, is a challenging task, due to (1) the high dimensionality and (2) the complex spatial dependence structures in image predictors and image outcomes. In this work, we propose a novel image-on-image regression model, by extending a spatial Bayesian latent factor model to image data, where low-dimensional latent factors are adopted to make connections between high-dimensional image outcomes and image predictors. We assign Gaussian process priors to the spatially varying regression coefficients in the model, which can well capture the complex spatial dependence among image outcomes as well as that among the image predictors. We perform simulation studies to evaluate the out-of-sample prediction performance of our method compared with linear regression and voxel-wise regression methods for different scenarios. The proposed method achieves better prediction accuracy by effectively accounting for the spatial dependence and efficiently reduces image dimensions with latent factors. We apply the proposed method to analysis of multimodal image data in the Human Connectome Project where we predict task-related contrast maps using subcortical volumetric seed maps.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherGaussian processes
dc.subject.otherspatial latent factor model
dc.subject.othermultimodal neuroimaging
dc.subject.otherBayesian predictive modeling
dc.titleA spatial Bayesian latent factor model for image-on-image regression
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171979/1/biom13420_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171979/2/biom13420-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/171979/3/biom13420.pdf
dc.identifier.doi10.1111/biom.13420
dc.identifier.sourceBiometrics
dc.identifier.citedreferenceReiss, P.T., Huang, L. and Mennes, M. ( 2010 ) Fast function-on-scalar regression with penalized basis expansions. The International Journal of Biostatistics, 6.
dc.identifier.citedreferenceGoldsmith, J., Wand, M.P. and Crainiceanu, C. ( 2011 ) Functional regression via variational Bayes. Electronic Journal of Statistics, 5, 572.
dc.identifier.citedreferenceHabas, C. ( 2018 ) Research note: A resting-state, cerebello-amygdaloid intrinsically connected network. Cerebellum & Ataxias, 5, 1 – 4.
dc.identifier.citedreferenceHabas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C.F., Menon, V. and Greicius, M.D. ( 2009 ) Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29, 8586 – 8594.
dc.identifier.citedreferenceHazra, A., Reich, B.J., Reich, D.S., Shinohara, R.T. and Staicu, A.-M. ( 2017 ) A spatio-temporal model for longitudinal image-on-image regression. Statistics in Biosciences, 11, 22 – 46.
dc.identifier.citedreferenceHuang, L., Goldsmith, J., Reiss, P.T., Reich, D.S. and Crainiceanu, C.M. ( 2013 ) Bayesian scalar-on-image regression with application to association between intracranial dti and cognitive outcomes. NeuroImage, 83, 210 – 223.
dc.identifier.citedreferenceHuang, H., Yu, P.S. and Wang, C. ( 2018 ) An introduction to image synthesis with generative adversarial nets [preprint]. arXiv:1803.04469.
dc.identifier.citedreferenceIsola, P., Zhu, J.-Y., Zhou, T. and Efros, A.A. ( 2017 ) Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125 – 1134.
dc.identifier.citedreferenceKang, J., Reich, B.J. and Staicu, A.-M. ( 2018 ) Scalar-on-image regression via the soft-thresholded Gaussian process. Biometrika, 105, 165 – 184.
dc.identifier.citedreferenceKodinariya, T.M. and Makwana, P.R. ( 2013 ) Review on determining number of cluster in k -means clustering. International Journal of Advance Research in Computer Science and Management Studies, 1, 90 – 95.
dc.identifier.citedreferenceMontagna, S., Tokdar, S.T., Neelon, B. and Dunson, D.B. ( 2012 ) Bayesian latent factor regression for functional and longitudinal data. Biometrics, 68, 1064 – 1073.
dc.identifier.citedreferenceMontagna, S., Wager, T., Barrett, L.F., Johnson, T.D. and Nichols, T.E. ( 2018 ) Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data. Biometrics, 74, 342 – 353.
dc.identifier.citedreferencePhan, K.L., Wager, T., Taylor, S.F. and Liberzon, I. ( 2002 ) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 16, 331 – 348.
dc.identifier.citedreferenceReiss, P.T. and Ogden, R.T. ( 2010 ) Functional generalized linear models with images as predictors. Biometrics, 66, 61 – 69.
dc.identifier.citedreferenceSuk, H.-I., Lee, S.-W., Shen, D. and Initiative, A.D.N. ( 2017 ) Deep ensemble learning of sparse regression models for brain disease diagnosis. Medical Image Analysis, 37, 101 – 113.
dc.identifier.citedreferenceSweeney, E., Shinohara, R., Shea, C., Reich, D. and Crainiceanu, C. ( 2013 ) Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI. American Journal of Neuroradiology, 34, 68 – 73.
dc.identifier.citedreferenceTavor, I., Jones, O.P., Mars, R., Smith, S., Behrens, T. and Jbabdi, S. ( 2016 ) Task-free MRI predicts individual differences in brain activity during task performance. Science, 352, 216 – 220.
dc.identifier.citedreferenceTurner, B.M., Paradiso, S., Marvel, C.L., Pierson, R., Ponto, L.L.B., Hichwa, R.D. and Robinson, R.G. ( 2007 ) The cerebellum and emotional experience. Neuropsychologia, 45, 1331 – 1341.
dc.identifier.citedreferenceWang, X., Zhu, H. and Initiative, A.D.N. ( 2017 ) Generalized scalar-on-image regression models via total variation. Journal of the American Statistical Association, 112, 1156 – 1168.
dc.identifier.citedreferenceYan, B. and Liu, Y. ( 2017 ) Smooth image-on-scalar regression for brain mapping [preprint]. arXiv:1703.05264.
dc.identifier.citedreferenceZhou, H., Li, L. and Zhu, H. ( 2013 ) Tensor regression with applications in neuroimaging data analysis. Journal of the American Statistical Association, 108, 540 – 552.
dc.identifier.citedreferenceZhu, J., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O. and Shechtman, E. ( 2017 ) Toward multimodal image-to-image translation. In Advances in Neural Information Processing Systems, 30, 465 – 476.
dc.identifier.citedreferenceBarch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, B.L., Corbetta, M., et al. ( 2013 ) Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage, 80, 169 – 189.
dc.identifier.citedreferenceBaumann, O. and Mattingley, J.B. ( 2012 ) Functional topography of primary emotion processing in the human cerebellum. NeuroImage, 61, 805 – 811.
dc.identifier.citedreferenceBowman, F.D. ( 2014 ) Brain imaging analysis. Annual Review of Statistics and Its Application, 1, 61 – 85.
dc.identifier.citedreferenceChen, Y., Wang, X., Kong, L. and Zhu, H. ( 2016 ) Local region sparse learning for image-on-scalar regression [preprint]. arXiv:1605.08501.
dc.identifier.citedreferenceDuff, E.P., Vennart, W., Wise, R.G., Howard, M.A., Harris, R.E., Lee, M., et al. ( 2015 ) Learning to identify CNS drug action and efficacy using multistudy fMRI data. Science Translational Medicine, 7, 274ra16 – 274ra16.
dc.identifier.citedreferenceGelfand, A.E., Kim, H.-J., Sirmans, C. and Banerjee, S. ( 2003 ) Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98, 387 – 396.
dc.identifier.citedreferenceGelman, A. and Rubin, D.B. ( 1992 ) Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457 – 472.
dc.identifier.citedreferenceGhosh, J. and Dunson, D.B. ( 2009 ) Default prior distributions and efficient posterior computation in Bayesian factor analysis. Journal of Computational and Graphical Statistics, 18, 306 – 320.
dc.identifier.citedreferenceGlover, G.H. ( 2011 ) Overview of functional magnetic resonance imaging. Neurosurgery Clinics, 22, 133 – 139.
dc.identifier.citedreferenceGoldsmith, J. and Kitago, T. ( 2016 ) Assessing systematic effects of stroke on motor control by using hierarchical function-on-scalar regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 65, 215 – 236.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.