Show simple item record

LGM Paleoclimate Constraints Inform Cloud Parameterizations and Equilibrium Climate Sensitivity in CESM2

dc.contributor.authorZhu, Jiang
dc.contributor.authorOtto-Bliesner, Bette L.
dc.contributor.authorBrady, Esther C.
dc.contributor.authorGettelman, Andrew
dc.contributor.authorBacmeister, Julio T.
dc.contributor.authorNeale, Richard B.
dc.contributor.authorPoulsen, Christopher J.
dc.contributor.authorShaw, Jonah K.
dc.contributor.authorMcGraw, Zachary S.
dc.contributor.authorKay, Jennifer E.
dc.date.accessioned2022-05-06T17:26:18Z
dc.date.available2023-05-06 13:26:17en
dc.date.available2022-05-06T17:26:18Z
dc.date.issued2022-04
dc.identifier.citationZhu, Jiang; Otto-Bliesner, Bette L. ; Brady, Esther C.; Gettelman, Andrew; Bacmeister, Julio T.; Neale, Richard B.; Poulsen, Christopher J.; Shaw, Jonah K.; McGraw, Zachary S.; Kay, Jennifer E. (2022). "LGM Paleoclimate Constraints Inform Cloud Parameterizations and Equilibrium Climate Sensitivity in CESM2." Journal of Advances in Modeling Earth Systems 14(4): n/a-n/a.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/172265
dc.description.abstractThe Community Earth System Model version 2 (CESM2) simulates a high equilibrium climate sensitivity (ECS > 5°C) and a Last Glacial Maximum (LGM) that is substantially colder than proxy temperatures. In this study, we examine the role of cloud parameterizations in simulating the LGM cooling in CESM2. Through substituting different versions of cloud schemes in the atmosphere model, we attribute the excessive LGM cooling to the new CESM2 schemes of cloud microphysics and ice nucleation. Further exploration suggests that removing an inappropriate limiter on cloud ice number (NoNimax) and decreasing the time-step size (substepping) in cloud microphysics largely eliminate the excessive LGM cooling. NoNimax produces a more physically consistent treatment of mixed-phase clouds, which leads to an increase in cloud ice content and a weaker shortwave cloud feedback over mid-to-high latitudes and the Southern Hemisphere subtropics. Microphysical substepping further weakens the shortwave cloud feedback. Based on NoNimax and microphysical substepping, we have developed a paleoclimate-calibrated CESM2 (PaleoCalibr), which simulates well the observed twentieth century warming and spatial characteristics of key cloud and climate variables. PaleoCalibr has a lower ECS (∼4°C) and a 20% weaker aerosol-cloud interaction than CESM2. PaleoCalibr represents a physically more consistent treatment of cloud microphysics than CESM2 and is a valuable tool in climate change studies, especially when a large climate forcing is involved. Our study highlights the unique value of paleoclimate constraints in informing the cloud parameterizations and ultimately the future climate projection.Plain Language SummaryThe Community Earth System Model version 2 (CESM2) shows a much higher equilibrium climate sensitivity (ECS > 5°C) than its predecessor models (≤4°C), which, if true, implies a greater future warming than previously thought and a more severe challenge for climate adaptation and mitigation. It is critical to determine whether the high ECS is realistic and what causes its increase. In a previous study, we suggested that the high ECS is likely unrealistic because CESM2 simulates excessive cooling for an ice age climate—the Last Glacial Maximum (LGM; ∼21,000 years ago). In this study, we investigate which aspects of CESM2 are responsible for the extreme LGM cooling and the high ECS. We find that the simulated LGM climate is very sensitive to treatments of cloud microphysical processes, and that removing an inappropriate limiter on cloud ice number and using a smaller time-step size in the microphysics largely eliminate the excessive LGM cooling. With these microphysical modifications, CESM2 simulates a much lower ECS (∼4°C) and matches present-day observations well. Our study suggests that an ECS > 5°C is likely unrealistic and highlights the importance of using past climates to inform and validate the model development including the treatment of clouds.Key PointsExcessive Last Glacial Maximum (LGM) cooling and an ECS > 5°C in Community Earth System Model version 2 are attributed to cloud microphysical processes including ice nucleationA new configuration (PaleoCalibr) is developed that removes an inappropriate cloud-ice-number limiter and decreases microphysical timestepPaleoCalibr simulates realistic LGM and modern climates, a lower ECS (3.9°C), and a weaker shortwave cloud feedback
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Academy of Sciences
dc.subject.otherCommunity Earth System Model version 2
dc.subject.othercloud parameterizations
dc.subject.othercloud feedback
dc.subject.otherequilibrium climate sensitivity
dc.subject.otherLast Glacial Maximum
dc.titleLGM Paleoclimate Constraints Inform Cloud Parameterizations and Equilibrium Climate Sensitivity in CESM2
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172265/1/jame21552.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172265/2/jame21552_am.pdf
dc.identifier.doi10.1029/2021MS002776
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferencePatnaude, R., Diao, M., Liu, X., & Chu, S. ( 2021 ). Effects of thermodynamics, dynamics and aerosols on cirrus clouds based on in situ observations and NCAR CAM6. Atmospheric Chemistry and Physics, 21 ( 3 ), 1835 – 1859. https://doi.org/10.5194/acp-21-1835-2021
dc.identifier.citedreferenceManabe, S., & Broccoli, A. J. ( 1985 ). A comparison of climate model sensitivity with data from the Last Glacial Maximum. Journal of the Atmospheric Sciences, 42 ( 23 ), 2643 – 2651. https://doi.org/10.1175/1520-0469(1985)042<2643:ACOCMS>2.0.CO;2
dc.identifier.citedreferenceMarchand, R., Ackerman, T., Smyth, M., & Rossow, W. B. ( 2010 ). A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. Journal of Geophysical Research, 115 ( D16 ), D16206. https://doi.org/10.1029/2009JD013422
dc.identifier.citedreferenceMeehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., et al. ( 2020 ). Characteristics of future warmer base states in CESM2. Earth and Space Science, 7 ( 9 ), e2020EA001296. https://doi.org/10.1029/2020ea001296
dc.identifier.citedreferenceMeehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., et al. ( 2020 ). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6 ( 26 ), eaba1981. https://doi.org/10.1126/sciadv.aba1981
dc.identifier.citedreferenceMülmenstädt, J., Salzmann, M., Kay, J. E., Zelinka, M. D., Ma, P.-L., Nam, C., et al. ( 2021 ). An underestimated negative cloud feedback from cloud lifetime changes. Nature Climate Change, 11 ( 6 ), 508 – 513. https://doi.org/10.1038/s41558-021-01038-1
dc.identifier.citedreferenceMyers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., & Caldwell, P. M. ( 2021 ). Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nature Climate Change, 11 ( 6 ), 501 – 507. https://doi.org/10.1038/s41558-021-01039-0
dc.identifier.citedreferenceNam, C., Bony, S., Dufresne, J.-L., & Chepfer, H. ( 2012 ). The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophysical Research Letters, 39 ( 21 ). https://doi.org/10.1029/2012GL053421
dc.identifier.citedreferenceOhgaito, R., Abe-Ouchi, A., O’Ishi, R., Takemura, T., Ito, A., Hajima, T., et al. ( 2018 ). Effect of high dust amount on surface temperature during the Last Glacial Maximum: A modelling study using MIROC-ESM. Climate of the Past, 14 ( 11 ), 1565 – 1581. https://doi.org/10.5194/cp-14-1565-2018
dc.identifier.citedreferenceOtto-Bliesner, B. L., Brady, E. C., Clauzet, G., Tomas, R., Levis, S., & Kothavala, Z. ( 2006 ). Last Glacial Maximum and Holocene climate in CCSM3. Journal of Climate, 19 ( 11 ), 2526 – 2544. https://doi.org/10.1175/JCLI3748.1
dc.identifier.citedreferencePeltier, W. R., Argus, D. F., & Drummond, R. ( 2015 ). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth, 120 ( 1 ), 450 – 487. https://doi.org/10.1002/2014JB011176
dc.identifier.citedreferencePincus, R., Platnick, S., Ackerman, S. A., Hemler, R. S., & Patrick Hofmann, R. J. ( 2012 ). Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. Journal of Climate, 25 ( 13 ), 4699 – 4720. https://doi.org/10.1175/jcli-d-11-00267.1
dc.identifier.citedreferenceSantos, S. P., Caldwell, P. M., & Bretherton, C. S. ( 2020 ). Numerically relevant timescales in the MG2 microphysics model. Journal of Advances in Modeling Earth Systems, 12 ( 4 ), e2019MS001972. https://doi.org/10.1029/2019MS001972
dc.identifier.citedreferenceSchmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U., Bartlein, P. J., et al. ( 2011 ). Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science, 334 ( 6061 ), 1385 – 1388. https://doi.org/10.1126/science.1203513
dc.identifier.citedreferenceShaw, J. K., McGraw, Z., Bruno, O., Storelvmo, T., & Hofer, S. ( 2022 ). Using satellite observations to evaluate model microphysical representation of Arctic mixed-phase clouds. Geophysical Research Letters, 49 ( 3 ), e2021GL096191. https://doi.org/10.1029/2021GL096191
dc.identifier.citedreferenceSherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al. ( 2020 ). An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58 ( 4 ), e2019RG000678. https://doi.org/10.1029/2019RG000678
dc.identifier.citedreferenceShin, S. I., Liu, Z., Otto-Bliesner, B., Brady, E., Kutzbach, J., & Harrison, S. ( 2003 ). A simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Climate Dynamics, 20 ( 2–3 ), 127 – 151. https://doi.org/10.1007/s00382-002-0260-x
dc.identifier.citedreferenceSwales, D. J., Pincus, R., & Bodas-Salcedo, A. ( 2018 ). The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2. Geoscientific Model Development, 11 ( 1 ), 77 – 81. https://doi.org/10.5194/gmd-11-77-2018
dc.identifier.citedreferenceTan, I., Storelvmo, T., & Zelinka, M. D. ( 2016 ). Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352 ( 6282 ), 224 – 227. https://doi.org/10.1126/science.aad5300
dc.identifier.citedreferenceTaylor, K. E. ( 2001 ). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, 106 ( D7 ), 7183 – 7192. https://doi.org/10.1029/2000JD900719
dc.identifier.citedreferenceTaylor, K. E., Crucifix, M., Braconnot, P., Hewitt, C. D., Doutriaux, C., Broccoli, A. J., et al. ( 2007 ). Estimating shortwave radiative forcing and response in climate models. Journal of Climate, 20 ( 11 ), 2530 – 2543. https://doi.org/10.1175/JCLI4143.1
dc.identifier.citedreferenceTierney, J. E., Zhu, J., King, J., Malevich, S. B., Hakim, G. J., & Poulsen, C. J. ( 2020 ). Glacial cooling and climate sensitivity revisited. Nature, 584 ( 7822 ), 569 – 573. https://doi.org/10.1038/s41586-020-2617-x
dc.identifier.citedreferenceWang, C., Soden, B. J., Yang, W., & Vecchi, G. A. ( 2021 ). Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophysical Research Letters, 48 ( 4 ), e2020GL091024. https://doi.org/10.1029/2020GL091024
dc.identifier.citedreferenceWang, Y., Liu, X., Hoose, C., & Wang, B. ( 2014 ). Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5. Atmospheric Chemistry and Physics, 14 ( 19 ), 10411 – 10430. https://doi.org/10.5194/acp-14-10411-2014
dc.identifier.citedreferenceZelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., et al. ( 2020 ). Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47 ( 1 ), e2019GL085782. https://doi.org/10.1029/2019GL085782
dc.identifier.citedreferenceZhu, J., Liu, Z., Brady, E., Otto-Bliesner, B., Zhang, J., Noone, D., et al. ( 2017 ). Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophysical Research Letters, 44 ( 13 ), 6984 – 6992. https://doi.org/10.1002/2017GL073406
dc.identifier.citedreferenceZhu, J., Otto-Bliesner, B. L., Brady, E. C., Poulsen, C. J., Tierney, J. E., Lofverstrom, M., & DiNezio, P. ( 2021 ). Assessment of equilibrium climate sensitivity of the Community Earth System Model version 2 through simulation of the Last Glacial Maximum. Geophysical Research Letters, 48 ( 3 ), e2020GL091220. https://doi.org/10.1029/2020GL091220
dc.identifier.citedreferenceZhu, J., & Poulsen, C. J. ( 2020 ). On the increase of climate sensitivity and cloud feedback with warming in the community atmosphere models. Geophysical Research Letters, 47 ( 18 ), e2020GL089143. https://doi.org/10.1029/2020GL089143
dc.identifier.citedreferenceZhu, J., & Poulsen, C. J. ( 2021 ). Last Glacial Maximum (LGM) climate forcing and ocean dynamical feedback and their implications for estimating climate sensitivity. Climate of the Past, 17 ( 1 ), 253 – 267. https://doi.org/10.5194/cp-17-253-2021
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Otto-Bliesner, B. L. ( 2020 ). High climate sensitivity in CMIP6 model not supported by paleoclimate. Nature Climate Change, 10 ( 5 ), 378 – 379. https://doi.org/10.1038/s41558-020-0764-6
dc.identifier.citedreferenceZhu, J., Poulsen, C. J., & Tierney, J. E. ( 2019 ). Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks. Science Advances, 5 ( 9 ), eaax1874. https://doi.org/10.1126/sciadv.aax1874
dc.identifier.citedreferenceAbe-Ouchi, A., Saito, F., Kageyama, M., Braconnot, P., Harrison, S. P., Lambeck, K., et al. ( 2015 ). Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments. Geoscientific Model Development, 8 ( 11 ), 3621 – 3637. https://doi.org/10.5194/gmd-8-3621-2015
dc.identifier.citedreferenceAdler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D., et al. ( 2018 ). The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9 ( 4 ), 138. https://doi.org/10.3390/atmos9040138
dc.identifier.citedreferenceBacmeister, J. T., Hannay, C., Medeiros, B., Gettelman, A., Neale, R., Fredriksen, H. B., et al. ( 2020 ). CO 2 increase experiments using the CESM: Relationship to climate sensitivity and comparison of CESM1 to CESM2. Journal of Advances in Modeling Earth Systems, 12 ( 11 ), e2020MS002120. https://doi.org/10.1029/2020MS002120
dc.identifier.citedreferenceBitz, C. M., Shell, K. M., Gent, P. R., Bailey, D. A., Danabasoglu, G., Armour, K. C., et al. ( 2011 ). Climate sensitivity of the Community Climate System Model, version 4. Journal of Climate, 25 ( 9 ), 3053 – 3070. https://doi.org/10.1175/JCLI-D-11-00290.1
dc.identifier.citedreferenceBjordal, J., Storelvmo, T., Alterskjær, K., & Carlsen, T. ( 2020 ). Equilibrium climate sensitivity above 5°C plausible due to state-dependent cloud feedback. Nature Geoscience, 13 ( 11 ), 718 – 721. https://doi.org/10.1038/s41561-020-00649-1
dc.identifier.citedreferenceBogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P. ( 2013 ). Higher-order turbulence closure and its impact on climate simulations in the community atmosphere model. Journal of Climate, 26 ( 23 ), 9655 – 9676. https://doi.org/10.1175/JCLI-D-13-00075.1
dc.identifier.citedreferenceBrady, E. C., Otto-Bliesner, B. L., Kay, J. E., & Rosenbloom, N. ( 2013 ). Sensitivity to glacial forcing in the CCSM4. Journal of Climate, 26 ( 6 ), 1901 – 1925. https://doi.org/10.1175/JCLI-D-11-00416.1
dc.identifier.citedreferenceCeppi, P., & Nowack, P. ( 2021 ). Observational evidence that cloud feedback amplifies global warming. Proceedings of the National Academy of Sciences, 118 ( 30 ), e2026290118. https://doi.org/10.1073/pnas.2026290118
dc.identifier.citedreferenceCesana, G. V., & Del Genio, A. D. ( 2021 ). Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nature Climate Change, 11 ( 3 ), 213 – 218. https://doi.org/10.1038/s41558-020-00970-y
dc.identifier.citedreferenceCharney, J. G., Arakawa, A., Baker, D. J., Bolin, B., Dickinson, R. E., Goody, R. M., et al. ( 1979 ). Carbon dioxide and climate: A scientific assessment. National Academy of Sciences.
dc.identifier.citedreferenceChepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P., et al. ( 2010 ). The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). Journal of Geophysical Research, 115 ( D4 ), D00H16. https://doi.org/10.1029/2009JD012251
dc.identifier.citedreferenceDanabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. ( 2020 ). The Community Earth System Model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12 ( 2 ), e2019MS001916. https://doi.org/10.1029/2019ms001916
dc.identifier.citedreferenceDeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., et al. ( 2010 ). Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107 ( 25 ), 11217 – 11222. https://doi.org/10.1073/pnas.0910818107
dc.identifier.citedreferenceEyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. ( 2016 ). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 ( 5 ), 1937 – 1958. https://doi.org/10.5194/gmd-9-1937-2016
dc.identifier.citedreferenceFeng, R., Otto-Bliesner, B. L., Brady, E. C., & Rosenbloom, N. ( 2020 ). Increased climate response and Earth system sensitivity from CCSM4 to CESM2 in mid-Pliocene simulations. Journal of Advances in Modeling Earth Systems, 12 ( 8 ), e2019MS002033. https://doi.org/10.1029/2019ms002033
dc.identifier.citedreferenceFrey, W. R., & Kay, J. E. ( 2018 ). The influence of extratropical cloud phase and amount feedbacks on climate sensitivity. Climate Dynamics, 50 ( 7 ), 3097 – 3116. https://doi.org/10.1007/s00382-017-3796-5
dc.identifier.citedreferenceGettelman, A., Bardeen, C. G., McCluskey, C. S., Järvinen, E., Stith, J., Bretherton, C., et al. ( 2020 ). Simulating observations of Southern Ocean clouds and implications for climate. Journal of Geophysical Research: Atmospheres, 125 ( 21 ), e2020JD032619. https://doi.org/10.1029/2020JD032619
dc.identifier.citedreferenceGettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., et al. ( 2019 ). High climate sensitivity in the Community Earth System Model version 2 (CESM2). Geophysical Research Letters, 46 ( 14 ), 8329 – 8337. https://doi.org/10.1029/2019GL083978
dc.identifier.citedreferenceGettelman, A., Kay, J. E., & Shell, K. M. ( 2012 ). The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. Journal of Climate, 25 ( 5 ), 1453 – 1469. https://doi.org/10.1175/JCLI-D-11-00197.1
dc.identifier.citedreferenceGettelman, A., & Morrison, H. ( 2015 ). Advanced two-moment bulk microphysics for global models. Part I: Off-line tests and comparison with other schemes. Journal of Climate, 28 ( 3 ), 1268 – 1287. https://doi.org/10.1175/JCLI-D-14-00102.1
dc.identifier.citedreferenceHargreaves, J. C., Annan, J. D., Yoshimori, M., & Abe-Ouchi, A. ( 2012 ). Can the Last Glacial Maximum constrain climate sensitivity? Geophysical Research Letters, 39 ( 24 ), 2012GL053872. https://doi.org/10.1029/2012GL053872
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 ( 730 ), 1999 – 2049. https://doi.org/10.1002/qj.3803
dc.identifier.citedreferenceHoose, C., Kristjánsson, J. E., Chen, J.-P., & Hazra, A. ( 2010 ). A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. Journal of the Atmospheric Sciences, 67 ( 8 ), 2483 – 2503. https://doi.org/10.1175/2010JAS3425.1
dc.identifier.citedreferenceHuang, B. Y., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., et al. ( 2017 ). Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30 ( 20 ), 8179 – 8205. https://doi.org/10.1175/jcli-d-16-0836.1
dc.identifier.citedreferenceIPCC. ( 2013 ). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ( T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, et al., Eds.). Cambridge University Press.
dc.identifier.citedreferenceIPCC. ( 2021 ). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ( V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al., Eds.). Cambridge University Press.
dc.identifier.citedreferenceJones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., & Morice, C. P. ( 2012 ). Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research, 117 ( D5 ). https://doi.org/10.1029/2011JD017139
dc.identifier.citedreferenceKay, J. E., Bourdages, L., Miller, N. B., Morrison, A., Yettella, V., Chepfer, H., & Eaton, B. ( 2016 ). Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. Journal of Geophysical Research: Atmospheres, 121 ( 8 ), 4162 – 4176. https://doi.org/10.1002/2015JD024699
dc.identifier.citedreferenceKay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. ( 2015 ). The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96 ( 8 ), 1333 – 1350. https://doi.org/10.1175/BAMS-D-13-00255.1
dc.identifier.citedreferenceKay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., et al. ( 2012 ). Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. Journal of Climate, 25 ( 15 ), 5190 – 5207. https://doi.org/10.1175/JCLI-D-11-00469.1
dc.identifier.citedreferenceKiehl, J. T. ( 2007 ). Twentieth century climate model response and climate sensitivity. Geophysical Research Letters, 34 ( 22 ), L22710. https://doi.org/10.1029/2007GL031383
dc.identifier.citedreferenceKiehl, J. T., Shields, C. A., Hack, J. J., & Collins, W. D. ( 2006 ). The climate sensitivity of the Community Climate System Model version 3 (CCSM3). Journal of Climate, 19 ( 11 ), 2584 – 2596. https://doi.org/10.1175/JCLI3747.1
dc.identifier.citedreferenceLarson, V. E., & Golaz, J.-C. ( 2005 ). Using probability density functions to derive consistent closure relationships among higher-order moments. Monthly Weather Review, 133 ( 4 ), 1023 – 1042. https://doi.org/10.1175/MWR2902.1
dc.identifier.citedreferenceLawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al. ( 2019 ). The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11 ( 12 ), 4245 – 4287. https://doi.org/10.1029/2018ms001583
dc.identifier.citedreferenceLenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., & Zyss, D. ( 2019 ). Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research: Atmospheres, 124 ( 12 ), 6307 – 6326. https://doi.org/10.1029/2018JD029522
dc.identifier.citedreferenceLoeb, N. G., Doelling, D. R., Wang, H. L., Su, W. Y., Nguyen, C., Corbett, J. G., et al. ( 2018 ). Clouds and the Earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. Journal of Climate, 31 ( 2 ), 895 – 918. https://doi.org/10.1175/jcli-d-17-0208.1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.