Show simple item record

Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems

dc.contributor.authorJakeman, John D.
dc.contributor.authorFriedman, Sam
dc.contributor.authorEldred, Michael S.
dc.contributor.authorTamellini, Lorenzo
dc.contributor.authorGorodetsky, Alex A.
dc.contributor.authorAllaire, Doug
dc.date.accessioned2022-05-06T17:28:02Z
dc.date.available2023-07-06 13:28:01en
dc.date.available2022-05-06T17:28:02Z
dc.date.issued2022-06-30
dc.identifier.citationJakeman, John D.; Friedman, Sam; Eldred, Michael S.; Tamellini, Lorenzo; Gorodetsky, Alex A.; Allaire, Doug (2022). "Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems." International Journal for Numerical Methods in Engineering 123(12): 2760-2790.
dc.identifier.issn0029-5981
dc.identifier.issn1097-0207
dc.identifier.urihttps://hdl.handle.net/2027.42/172303
dc.description.abstractWe present an adaptive algorithm for constructing surrogate models of multi-disciplinary systems composed of a set of coupled components. With this goal we introduce “coupling” variables with a priori unknown distributions that allow surrogates of each component to be built independently. Once built, the surrogates of the components are combined to form an integrated-surrogate that can be used to predict system-level quantities of interest at a fraction of the cost of the original model. The error in the integrated-surrogate is greedily minimized using an experimental design procedure that allocates the amount of training data, used to construct each component-surrogate, based on the contribution of those surrogates to the error of the integrated-surrogate. The multi-fidelity procedure presented is a generalization of multi-index stochastic collocation that can leverage ensembles of models of varying cost and accuracy, for one or more components, to reduce the computational cost of constructing the integrated-surrogate. Extensive numerical results demonstrate that, for a fixed computational budget, our algorithm is able to produce surrogates that are orders of magnitude more accurate than methods that treat the integrated system as a black-box.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherexperimental design
dc.subject.othermulti-disciplinary
dc.subject.othermulti-fidelity
dc.subject.othermulti-physics
dc.subject.othersurrogate
dc.subject.otheruncertainty quantification
dc.titleAdaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172303/1/nme6958.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172303/2/nme6958_am.pdf
dc.identifier.doi10.1002/nme.6958
dc.identifier.sourceInternational Journal for Numerical Methods in Engineering
dc.identifier.citedreferenceAmsallem D, Zahr MJ, Farhat C. Nonlinear model order reduction based on local reduced-order bases. Int J Numer Methods Eng. 2012; 92 ( 10 ): 891 - 916. doi: 10.1002/nme.437
dc.identifier.citedreferenceHaji-Ali A, Nobile F, Tamellini L, Tempone R. Multi-index stochastic collocation for random PDEs. Comput Methods Appl Mech Eng. 2016; 306: 95 - 122. doi: 10.1016/j.cma.2016.03.029
dc.identifier.citedreferenceBeck J, Tamellini L, Tempone R. IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains. Comput Methods Appl Mech Eng. 2019; 351: 330 - 350. doi: 10.1016/j.cma.2019.03.042
dc.identifier.citedreferencePiazzola C, Tamellini L, Pellegrini R, Broglia R, Serani A, Diez M. Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance. Eng Comput. 2022.
dc.identifier.citedreferenceHaji-Ali AL, Nobile F, Tamellini L, Tempone R. Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity. Found Comput Math. 2016; 16 ( 6 ): 1555 - 1605. doi: 10.1007/s10208-016-9327-7
dc.identifier.citedreferenceSmetana K, Patera AT. Optimal local approximation spaces for component-based static condensation procedures. SIAM J Sci Comput. 2016; 38 ( 5 ): A3318 - A3356. doi: 10.1137/15M1009603
dc.identifier.citedreferenceEigel M, Gruhlke R. A local hybrid surrogate-based finite element tearing interconnecting dual-primal method for nonsmooth random partial differential equations. Int J Numer Methods Eng. 2021; 122 ( 4 ): 1001 - 1030. doi: 10.1002/nme.6571
dc.identifier.citedreferenceMu L, Zhang G. A domain decomposition model reduction method for linear convection-diffusion equations with random coefficients. SIAM J Sci Comput. 2019; 41 ( 3 ): A1984 - A2011. doi: 10.1137/18M1170601
dc.identifier.citedreferenceContreras AA, Mycek P, Le Maitre OP, Rizzi F, Debusschere B, Knio OM. Parallel domain decomposition strategies for stochastic elliptic equations Part B: accelerated Monte Carlo sampling with local PC expansions. SIAM J Sci Comput. 2018; 40 ( 4 ): C547 - C580. doi: 10.1137/17M1132197
dc.identifier.citedreferencePeherstorfer B, Butnaru D, Willcox K, Bungartz HJ. Localized discrete empirical interpolation method. SIAM J Sci Comput. 2014; 36 ( 1 ): A168 - A192. doi: 10.1137/130924408
dc.identifier.citedreferenceBuhr A, Iapichino L, Ohlberger M, Rave S, Schindler F, Smetana K. Localized Model Reduction for Parameterized Problems. Walter De Gruyter; 2019.
dc.identifier.citedreferenceChen Y, Jakeman J, Gittelson C, Xiu D. Local polynomial chaos expansion for linear differential equations with high dimensional random inputs. SIAM J Sci Comput. 2015; 37 ( 1 ): A79 - A102. doi: 10.1137/140970100
dc.identifier.citedreferenceGranas A, Dugundji J. Fixed Point Theory. Springer Monographs in Mathematics. New York, NY: Springer; 2003. doi: 10.1007/978-0-387-21593-8
dc.identifier.citedreferenceRogers J. DeMAID/GA-An enhanced design manager’s aid for intelligent decomposition; 2012.
dc.identifier.citedreferenceMarque-Pucheu S, Perrin G, Garnier J. Efficient sequential experimental design for surrogate modeling of nested codes. ESAIM PS. 2019; 23: 245 - 270. doi: 10.1051/ps/2018011
dc.identifier.citedreferenceChen X, Ng B, Sun Y, Tong C. A flexible uncertainty quantification method for linearly coupled multi-physics systems. J Comput Phys. 2013; 248: 383 - 401. doi: 10.1016/j.jcp.2013.04.009
dc.identifier.citedreferenceJakeman J, Eldred M, Xiu D. Numerical approach for quantification of epistemic uncertainty. J Comput Phys. 2010; 229 ( 12 ): 4648 - 4663. doi: 10.1016/j.jcp.2010.03.003
dc.identifier.citedreferenceChen X, Park EJ, Xiu D. A flexible numerical approach for quantification of epistemic uncertainty. J Comput Phys. 2013; 240: 211 - 224. doi: 10.1016/j.jcp.2013.01.018
dc.identifier.citedreferenceNarayan A, Jakeman JD. Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation. SIAM/J Sci Comput. 2014; 36 ( 6 ): 2952 - 2983. doi: 10.1137/140966368
dc.identifier.citedreferenceErnst OG, Sprungk B, Tamellini L. On expansions and nodes for sparse grid collocation of lognormal elliptic PDEs. Arxiv e-prints 2019(1906.01252). Accepted. To appear on the Springer book “Sparse grids and application - Munich 2018 proceedings.
dc.identifier.citedreferenceBungartz HJ, Griebel M. Sparse grids. Acta Numer. 2004; 13: 1 - 123. doi: 10.1017/S0962492904000182
dc.identifier.citedreferenceNobile F, Tamellini L, Tempone R. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs. Numer Math. 2016; 134 ( 2 ): 343 - 388. doi: 10.1007/s00211-015-0773-y
dc.identifier.citedreferenceEigel M, Ernst OG, Sprungk B, Tamellini L. On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion. SIAM J Numer Anal. 2022.
dc.identifier.citedreferenceChkifa A, Cohen A, Schwab C. High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found Comput Math. 2014; 14 ( 4 ): 601 - 633. doi: 10.1007/s10208-013-9154-z
dc.identifier.citedreferenceJakeman JD. PyApprox: probabilistic analysis and approximation of data and simulation; 2021. https://sandialabs.github.io/pyapprox/index.html
dc.identifier.citedreferenceZaman K, Mahadevan S. Robustness-based design optimization of multidisciplinary system under epistemic uncertainty. AIAA J. 2013; 51 ( 5 ): 1021 - 1031. doi: 10.2514/1.J051372
dc.identifier.citedreferenceLi K, Allaire D. A compressed sensing approach to uncertainty propagation for approximately additive functions. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2016. 10.1115/DETC2016-60195
dc.identifier.citedreferenceReed R. The Superalloys: Fundamentals and Applications. Cambridge University Press; 2006.
dc.identifier.citedreferenceRasmussen CE, Williams CKI. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). MIT Press; 2005.
dc.identifier.citedreferenceSacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Stat Sci. 1989; 4 ( 4 ): 409 - 423.
dc.identifier.citedreferenceGhanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag; 1991.
dc.identifier.citedreferenceSudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf. 2008; 93 ( 7 ): 964 - 979. doi: 10.1016/i.ress.2007.04.002
dc.identifier.citedreferenceXiu D, Karniadakis G. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput. 2002; 24 ( 2 ): 619 - 644. doi: 10.1137/S1064827501387826
dc.identifier.citedreferenceHarbrecht H, Jakeman J, Zaspel P. Cholesky-based experimental design for Gaussian process and kernel-based emulation and calibration. Commun Comput Phys. 2021; 29 ( 4 ): 1152 - 1185. doi: 10.4208/cicp.OA-2020-0060
dc.identifier.citedreferenceDoostan A, Validi A, Iaccarino G. Non-intrusive low-rank separated approximation of high-dimensional stochastic models. Comput Methods Appl Mech Eng. 2013; 263: 42 - 55. doi: 10.1016/j.cma.2013.04.003
dc.identifier.citedreferenceGorodetsky A, Jakeman J. Gradient-based optimization for regression in the functional tensor-train format. J Comput Phys. 2018; 374: 1219 - 1238. doi: 10.1016/j.jcp.2018.08.010
dc.identifier.citedreferenceOseledets IV. Tensor-train decomposition. SIAM J Sci Comput. 2011; 33 ( 5 ): 2295 - 2317. doi: 10.1137/090752286
dc.identifier.citedreferenceNobile F, Tempone R, Webster C. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal. 2008; 46 ( 5 ): 2309 - 2345. doi: 10.1137/060663660
dc.identifier.citedreferenceXiu D, Hesthaven J. High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput. 2005; 27 ( 3 ): 1118 - 1139. doi: 10.1137/040615201
dc.identifier.citedreferenceJakeman J, Roberts S. Local and dimension adaptive stochastic collocation for uncertainty quantification. In: Garcke J, Griebel M, eds. Sparse Grids and Applications. Lecture Notes in Computational Science and Engineering. Vol 88. Springer; 2013: 181 - 203.
dc.identifier.citedreferenceChen P, Quarteroni A, Rozza G. Comparison between reduced basis and stochastic collocation methods for elliptic problems. J Sci Comput. 2014; 59 ( 1 ): 187 - 216. doi: 10.1007/s10915-013-9764-2
dc.identifier.citedreferenceElman HC, Liao Q. Reduced basis collocation methods for partial differential equations with random coefficients. SIAM/ASA J Uncertain Quantif. 2013; 1 ( 1 ): 192 - 217. doi: 10.1137/120881841
dc.identifier.citedreferenceManzoni A, Pagani S, Lassila T. Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models. SIAM/ASA J Uncertain Quantif. 2016; 4 ( 1 ): 380 - 412. doi: 10.1137/140995817
dc.identifier.citedreferenceRozza G, Huynh DBP, Patera AT. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng. 2008; 15 ( 3 ): 229. doi: 10.1007/s11831-008-9019-9
dc.identifier.citedreferenceZhu Y, Zabaras N. Bayesian deep convolutional encoder decoder networks for surrogate modeling and uncertainty quantification. J Comput Phys. 2018; 366: 415 - 447. doi: 10.1016/j.jcp.2018.04.018
dc.identifier.citedreferenceQin T, Chen Z, Jakeman J, Xiu D. Deep learning of parameterized equations with applications to uncertainty quantification. Int J Uncertain Quantif. 2021; 11 ( 2 ): 63 - 82. doi: 10.1615/Int.J.UncertaintyQuantification.2020034123
dc.identifier.citedreferenceArnst M, Ghanem R, Phipps E, Red-Horse J. Measure transformation and efficient quadrature in reduced-dimensional stochastic modeling of coupled problems. Int J Numer Methods Eng. 2012; 92 ( 12 ): 1044 - 1080. doi: 10.1002/nme.4368
dc.identifier.citedreferenceAmaral S, Allaire D, Willcox K. A decomposition-based approach to uncertainty analysis of feed-forward multicomponent systems. Int J Numer Methods Eng. 2014; 100 ( 13 ): 982 - 1005. doi: 10.1002/nme.4779
dc.identifier.citedreferenceConstantine P, Phipps E, Wildey T. Efficient uncertainty propagation for network multiphysics systems. Int J Numer Methods Eng. 2014; 99 ( 3 ): 183 - 202. doi: 10.1002/nme.4667
dc.identifier.citedreferenceSankararaman S, Mahadevan S. Likelihood-based approach to multidisciplinary analysis under uncertainty. J Mech Des. 2012; 134 ( 3 ). doi: 10.1115/1.4005619
dc.identifier.citedreferenceMittal A, Chen X, Tong CH, Iaccarino G. A flexible uncertainty propagation framework for general multiphysics systems. SIAM/ASA J Uncertain Quantif. 2016; 4 ( 1 ): 218 - 243. doi: 10.1137/140981411
dc.identifier.citedreferenceCarlberg K, Guzzetti S, Khalil M, Sargsyan K. The network uncertainty quantification method for propagating uncertainties in component-based systems. arXiv; 2020.
dc.identifier.citedreferenceChaudhuri A, Lam R, Willcox K. Multifidelity uncertainty propagation via adaptive surrogates in coupled multidisciplinary systems. AIAA J. 2018; 56 ( 1 ): 235 - 249. doi: 10.2514/1.J055678
dc.identifier.citedreferenceFriedman S, Isaac B, Ghoreishi SF, Allaire DL. Efficient decoupling of multiphysics systems for uncertainty propagation. Proc AIAA SciTech Forum. 2018. doi: 10.2514/6.2018-1661
dc.identifier.citedreferenceIsaac B, Friedman S, Allaire DL. Efficient approximation of coupling variable fixed point sets for decoupling multidisciplinary systems. Proc AIAA SciTech Forum. 2018. doi: 10.2514/6.2018-1908
dc.identifier.citedreferenceKyzyurova KN, Berger JO, Wolpert RL. Coupling computer models through linking their statistical emulators. SIAM/ASA J Uncertain Quantif. 2018; 6 ( 3 ): 1151 - 1171. doi: 10.1137/17M1157702
dc.identifier.citedreferenceSanson F, Maitre OL, Congedo PM. Systems of Gaussian process models for directed chains of solvers. Comput Methods Appl Mech Eng. 2019; 352: 32 - 55. doi: 10.1016/j.cma.2019.04.013
dc.identifier.citedreferenceJakeman J, Eldred M, Geraci G, Gorodetsky A. Adaptive multi-index collocation for uncertainty quantification and sensitivity analysis. Int J Numer Methods Eng. 2019; 121: 1314 - 1343.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.