Show simple item record

Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms

dc.contributor.authorKitamoto, Sho
dc.contributor.authorKamada, Nobuhiko
dc.date.accessioned2022-05-06T17:30:00Z
dc.date.available2023-07-06 13:29:58en
dc.date.available2022-05-06T17:30:00Z
dc.date.issued2022-06
dc.identifier.citationKitamoto, Sho; Kamada, Nobuhiko (2022). "Periodontal connection with intestinal inflammation: Microbiological and immunological mechanisms." Periodontology 2000 (1): 142-153.
dc.identifier.issn0906-6713
dc.identifier.issn1600-0757
dc.identifier.urihttps://hdl.handle.net/2027.42/172344
dc.description.abstractHumans have coevolved with the trillions of resident microbes that populate every nook and cranny of the body. At each site, the resident microbiota creates a unique ecosystem specialized to its environment, benefiting the development and maintenance of human physiology through harmonious symbiotic relationships with the host. However, when the resident microbiota is perturbed, significant complications may arise with disastrous consequences that affect the local and distant ecosystems. In this context, periodontal disease results in inflammation beyond the oral cavity, such as in the gastrointestinal tract. Accumulating evidence indicates that potentially harmful oral resident bacteria (referred to as pathobionts) and pathogenic immune cells in the oral mucosa can migrate to the lower gastrointestinal tract and contribute to intestinal inflammation. We will review the most recent advances concerning the periodontal connection with intestinal inflammation from microbiological and immunological perspectives. Potential therapeutic approaches that target the connection between the mouth and the gut to treat gastrointestinal diseases, such as inflammatory bowel disease, will be examined. Deciphering the complex interplay between microbes and immunity along the mouth–gut axis will provide a better understanding of the pathogenesis of both oral and gut pathologies and present therapeutic opportunities.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinflammatory bowel disease
dc.subject.otheroral-gut axis
dc.subject.othersystemic interactions
dc.subject.otheroral bacteria
dc.subject.otherperiodontitis
dc.titlePeriodontal connection with intestinal inflammation: Microbiological and immunological mechanisms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172344/1/prd12424_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172344/2/prd12424.pdf
dc.identifier.doi10.1111/prd.12424
dc.identifier.sourcePeriodontology 2000
dc.identifier.citedreferenceRao RK. Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer. Methods Mol Biol. 2008; 447: 171 - 183.
dc.identifier.citedreferenceBriskin M, Winsor-Hines D, Shyjan A, et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol. 1997; 151 ( 1 ): 97 - 110.
dc.identifier.citedreferenceKato S, Hokari R, Matsuzaki K, et al. Amelioration of murine experimental colitis by inhibition of mucosal addressin cell adhesion molecule-1. J Pharmacol Exp Ther. 2000; 295 ( 1 ): 183 - 189.
dc.identifier.citedreferenceCoccia M, Harrison OJ, Schiering C, et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 2012; 209 ( 9 ): 1595 - 1609.
dc.identifier.citedreferenceHarbour SN, Maynard CL, Zindl CL, Schoeb TR, Weaver CT. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci USA. 2015; 112 ( 22 ): 7061 - 7066.
dc.identifier.citedreferenceBsat M, Chapuy L, Rubio M, et al. Differential pathogenic Th17 profile in mesenteric lymph nodes of Crohn’s disease and ulcerative colitis patients. Front Immunol. 2019; 10: 1177.
dc.identifier.citedreferenceAnnunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007; 204 ( 8 ): 1849 - 1861.
dc.identifier.citedreferenceCalderón-Gómez E, Bassolas-Molina H, Mora-Buch R, et al. Commensal-specific CD4(+) cells from patients with Crohn’s disease have a T-helper 17 inflammatory profile. Gastroenterology. 2016; 151 ( 3 ): 489 - 500 e3.
dc.identifier.citedreferenceHegazy AN, West NR, Stubbington MJT, et al. Circulating and tissue-resident CD4(+) T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology. 2017; 153 ( 5 ): 1320 - 37 e16.
dc.identifier.citedreferenceBeklen A, Ainola M, Hukkanen M, Gurgan C, Sorsa T, Konttinen YT. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J Dent Res. 2007; 86 ( 4 ): 347 - 351.
dc.identifier.citedreferenceCheng WC, van Asten SD, Burns LA, et al. Periodontitis-associated pathogens P gingivalis and A actinomycetemcomitans activate human CD14(+) monocytes leading to enhanced Th17/IL-17 responses. Eur J Immunol. 2016; 46 ( 9 ): 2211 - 2221.
dc.identifier.citedreferenceEskan MA, Jotwani R, Abe T, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012; 13 ( 5 ): 465 - 473.
dc.identifier.citedreferenceMoutsopoulos NM, Konkel J, Sarmadi M, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med. 2014; 6 ( 229 ):229ra40.
dc.identifier.citedreferenceOno Y, Kanai T, Sujino T, et al. T-helper 17 and interleukin-17-producing lymphoid tissue inducer-like cells make different contributions to colitis in mice. Gastroenterology. 2012; 143 ( 5 ): 1288 - 1297.
dc.identifier.citedreferenceAhern PP, Schiering C, Buonocore S, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 2010; 33 ( 2 ): 279 - 288.
dc.identifier.citedreferenceHugenholtz F, de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci. 2018; 75 ( 1 ): 149 - 160.
dc.identifier.citedreferenceDiene SM, Merhej V, Henry M, et al. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle. Mol Biol Evol. 2013; 30 ( 2 ): 369 - 383.
dc.identifier.citedreferenceJuillerat P, Schneeweiss S, Cook EF, Ananthakrishnan AN, Mogun H, Korzenik JR. Drugs that inhibit gastric acid secretion may alter the course of inflammatory bowel disease. Aliment Pharmacol Ther. 2012; 36 ( 3 ): 239 - 247.
dc.identifier.citedreferenceShah R, Richardson P, Yu H, Kramer J, Hou JK. Gastric acid suppression is associated with an increased risk of adverse outcomes in inflammatory bowel disease. Digestion. 2017; 95 ( 3 ): 188 - 193.
dc.identifier.citedreferenceLu TX, Dapas M, Lin E, Peters T, Sakuraba A. The influence of proton pump inhibitor therapy on the outcome of infliximab therapy in inflammatory bowel disease: a patient-level meta-analysis of randomised controlled studies. Gut. 2021; 70: 2076 - 2084
dc.identifier.citedreferenceSandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013; 369 ( 8 ): 711 - 721.
dc.identifier.citedreferenceDulai PS, Singh S, Jiang X, et al. The real-world effectiveness and safety of vedolizumab for moderate-severe Crohn’s disease: results from the US VICTORY Consortium. Am J Gastroenterol. 2016; 111 ( 8 ): 1147 - 1155.
dc.identifier.citedreferenceEscapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems. 2018; 3 ( 6 ): 00187 – 18.
dc.identifier.citedreferenceCostalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 2014; 162 ( 2 Pt A ): 22 - 38.
dc.identifier.citedreferenceKoren N, Zubeidat K, Saba Y, et al. Maturation of the neonatal oral mucosa involves unique epithelium-microbiota interactions. Cell Host Microbe. 2021; 29 ( 2 ): 197 - 209 e5.
dc.identifier.citedreferenceZhu L, Kreth J. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. Oxid Med Cell Longev. 2012; 2012: 717843.
dc.identifier.citedreferenceGilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018; 24 ( 4 ): 392 - 400.
dc.identifier.citedreferenceGuo Y, Kitamoto S, Kamada N. Microbial adaptation to the healthy and inflamed gut environments. Gut Microbes. 2020; 12 ( 1 ): 1857505.
dc.identifier.citedreferenceKitamoto S, Nagao-Kitamoto H, Kuffa P, Kamada N. Regulation of virulence: the rise and fall of gastrointestinal pathogens. J Gastroenterol. 2016; 51 ( 3 ): 195 - 205.
dc.identifier.citedreferenceKamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013; 13 ( 5 ): 321 - 335.
dc.identifier.citedreferenceKitamoto S, Nagao-Kitamoto H, Hein R, Schmidt TM, Kamada N. The bacterial connection between the oral cavity and the gut diseases. J Dent Res. 2020; 99 ( 9 ): 1021 - 1029.
dc.identifier.citedreferenceGevers D, Kugathasan S, Denson L, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014; 15 ( 3 ): 382 - 392.
dc.identifier.citedreferenceDinakaran V, Mandape SN, Shuba K, et al. Identification of specific oral and gut pathogens in full thickness colon of colitis patients: implications for colon motility. Front Microbiol. 2018; 9: 3220.
dc.identifier.citedreferenceSaid HS, Suda W, Nakagome S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014; 21 ( 1 ): 15 - 25.
dc.identifier.citedreferenceShe Y-Y, Kong X-B, Ge Y-P, et al. Periodontitis and inflammatory bowel disease: a meta-analysis. BMC Oral Health. 2020; 20 ( 1 ): 67.
dc.identifier.citedreferenceLockhart PB, Brennan MT, Sasser HC, Fox PC, Paster BJ, Bahrani-Mougeot FK. Bacteremia associated with toothbrushing and dental extraction. Circulation. 2008; 117 ( 24 ): 3118 - 3125.
dc.identifier.citedreferenceParahitiyawa NB, Jin LJ, Leung WK, Yam WC, Samaranayake LP. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev. 2009; 22 ( 1 ): 46 - 64.
dc.identifier.citedreferenceHorliana ACRT, Chambrone L, Foz AM, et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: a systematic review. PLoS One. 2014; 9 ( 5 ): e98271.
dc.identifier.citedreferenceTsukasaki M, Komatsu N, Nagashima K, et al. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018; 9 ( 1 ): 701.
dc.identifier.citedreferenceAbed J, Maalouf N, Manson AL, et al. Colon cancer-associated fusobacterium nucleatum may originate from the oral cavity and reach colon tumors via the circulatory system. Front Cell Infect Microbiol. 2020; 10: 400.
dc.identifier.citedreferenceHajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021; 21: 426 - 440. doi: 10.1038/s41577-020-00488-6
dc.identifier.citedreferenceHumphrey SP, Williamson RT. A review of saliva: normal composition, flow, and function. J Prosthet Dent. 2001; 85 ( 2 ): 162 - 169.
dc.identifier.citedreferenceSender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016; 14 ( 8 ): e1002533.
dc.identifier.citedreferenceSchmidt TSB, Hayward MR, Coelho LP, et al. Extensive transmission of microbes along the gastrointestinal tract. Elife. 2019; 8: e42693.
dc.identifier.citedreferenceMartinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005; 96 ( 2 ): 94 - 102.
dc.identifier.citedreferenceHowden CW, Hunt RH. Relationship between gastric secretion and infection. Gut. 1987; 28 ( 1 ): 96 - 107.
dc.identifier.citedreferenceGiannella RA, Broitman SA, Zamcheck N. Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut. 1972; 13 ( 4 ): 251 - 256.
dc.identifier.citedreferenceAtarashi K, Suda W, Luo C, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science. 2017; 358 ( 6361 ): 359 - 365.
dc.identifier.citedreferenceCastaner O, Goday A, Park Y-M, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018; 2018: 4095789.
dc.identifier.citedreferencePaganelli FL, Luyer M, Hazelbag CM, et al. Roux-Y Gastric Bypass and Sleeve Gastrectomy directly change gut microbiota composition independent of surgery type. Sci Rep. 2019; 9 ( 1 ): 10979.
dc.identifier.citedreferencePress AG, Hauptmann IA, Hauptmann L, et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 1998; 12 ( 7 ): 673 - 678.
dc.identifier.citedreferenceWalker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide. 2018; 73: 81 - 88.
dc.identifier.citedreferenceKamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013; 14 ( 7 ): 685 - 690.
dc.identifier.citedreferenceChen Y, Chen Y, Cao P, Su W, Zhan N, Dong W Fusobacterium nucleatum facilitates ulcerative colitis through activating IL-17F signaling to NF-kappaB via the upregulation of CARD3 expression. J Pathol. 2020; 250 ( 2 ): 170 - 182.
dc.identifier.citedreferenceLiu H, Hong XL, Sun TT, Huang XW, Wang JL, Xiong H Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis. 2020; 21 ( 7 ): 385 - 398.
dc.identifier.citedreferenceKomiya Y, Shimomura Y, Higurashi T, et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut. 2019; 68 ( 7 ): 1335 - 1337.
dc.identifier.citedreferenceKrisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun. 2000; 68 ( 5 ): 2907 - 2915.
dc.identifier.citedreferenceAhn SH, Chun S, Park C, Lee JH, Lee SW, Lee TH. Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection. PLoS One. 2017; 12 ( 11 ): e0188755.
dc.identifier.citedreferenceBhattacharyya S, Ghosh SK, Shokeen B, et al. FAD-I, a Fusobacterium nucleatum cell wall-associated diacylated lipoprotein that mediates human beta defensin 2 induction through toll-like receptor-1/2 (TLR-1/2) and TLR-2/6. Infect Immun. 2016; 84 ( 5 ): 1446 - 1456.
dc.identifier.citedreferenceOhkusa T, Yoshida T, Sato N, Watanabe S, Tajiri H, Okayasu I. Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol. 2009; 58 ( Pt 5 ): 535 - 545.
dc.identifier.citedreferenceDharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011; 79 ( 7 ): 2597 - 2607.
dc.identifier.citedreferenceLiu LE, Liang L, Liang H, et al. Fusobacterium nucleatum aggravates the progression of colitis by regulating M1 macrophage polarization via AKT2 pathway. Front Immunol. 2019; 10: 1324.
dc.identifier.citedreferenceCao P, Chen Y, Guo X, et al. Fusobacterium nucleatum activates endoplasmic reticulum stress to promote Crohn’s disease development via the upregulation of CARD3 expression. Front Pharmacol. 2020; 11: 106.
dc.identifier.citedreferenceKostic A, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013; 14 ( 2 ): 207 - 215.
dc.identifier.citedreferenceWu J, Li Q, Fu X Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol. 2019; 12 ( 6 ): 846 - 851.
dc.identifier.citedreferenceRafiei M, Kiani F, Sayehmiri F, Sayehmiri K, Sheikhi A, Zamanian AM. Study of Porphyromonas gingivalis in periodontal diseases: a systematic review and meta-analysis. Med J Islam Repub Iran. 2017; 31: 355 - 362.
dc.identifier.citedreferenceHow KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016; 7: 53.
dc.identifier.citedreferenceArimatsu K, Yamada H, Miyazawa H, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014; 4: 4828.
dc.identifier.citedreferenceNakajima M, Arimatsu K, Kato T, et al. Oral administration of P gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS One. 2015; 10 ( 7 ): e0134234.
dc.identifier.citedreferencePalm N, de Zoete M, Cullen T, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014; 158 ( 5 ): 1000 - 1010.
dc.identifier.citedreferenceSaygun I, Nizam N, Keskiner I, et al. Salivary infectious agents and periodontal disease status. J Periodontal Res. 2011; 46 ( 2 ): 235 - 239.
dc.identifier.citedreferenceSato K, Yokoji M, Yamada M, Nakajima T, Yamazaki K. An orally administered oral pathobiont and commensal have comparable and innocuous systemic effects in germ-free mice. J Periodontal Res. 2018; 53 ( 6 ): 950 - 960.
dc.identifier.citedreferenceMottawea W, Chiang C-K, Mühlbauer M, et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun. 2016; 7: 13419.
dc.identifier.citedreferenceAttene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ Mol Mutagen. 2010; 51 ( 4 ): 304 - 314.
dc.identifier.citedreferenceMiller TW, Wang EA, Gould S, et al. Hydrogen sulfide is an endogenous potentiator of T cell activation. J Biol Chem. 2012; 287 ( 6 ): 4211 - 4221.
dc.identifier.citedreferenceRiviere A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front Microbiol. 2016; 7: 979.
dc.identifier.citedreferenceRoediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980; 21 ( 9 ): 793 - 798.
dc.identifier.citedreferenceRoediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997; 42 ( 8 ): 1571 - 1579.
dc.identifier.citedreferenceRoediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet. 1980; 2 ( 8197 ): 712 - 715.
dc.identifier.citedreferenceZhang L, Budiman V, Day AS, et al. Isolation and detection of Campylobacter concisus from saliva of healthy individuals and patients with inflammatory bowel disease. J Clin Microbiol. 2010; 48 ( 8 ): 2965 - 2967.
dc.identifier.citedreferenceZhang L, Man SM, Day AS, et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. J Clin Microbiol. 2009; 47 ( 2 ): 453 - 455.
dc.identifier.citedreferenceMan SM, Zhang L, Day AS, Leach ST, Lemberg DA, Mitchell H Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm Bowel Dis. 2010; 16 ( 6 ): 1008 - 1016.
dc.identifier.citedreferenceMukhopadhya I, Thomson JM, Hansen R, Berry SH, El-Omar EM, Hold GL. Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS One. 2011; 6 ( 6 ): e21490.
dc.identifier.citedreferenceIsmail Y, Mahendran V, Octavia S, et al. Investigation of the enteric pathogenic potential of oral Campylobacter concisus strains isolated from patients with inflammatory bowel disease. PLoS One. 2012; 7 ( 5 ): e38217.
dc.identifier.citedreferenceChung HKL, Tay A, Octavia S, et al. Genome analysis of Campylobacter concisus strains from patients with inflammatory bowel disease and gastroenteritis provides new insights into pathogenicity. Sci Rep. 2016; 6: 38442.
dc.identifier.citedreferenceMan SM, Kaakoush NO, Leach ST, et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis. 2010; 202 ( 12 ): 1855 - 1865.
dc.identifier.citedreferenceSwidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005; 43 ( 7 ): 3380 - 3389.
dc.identifier.citedreferenceLavrencic P, Kaakoush NO, Huinao KD, Kain N, Mitchell HM. Investigation of motility and biofilm formation by intestinal Campylobacter concisus strains. Gut Pathog. 2012; 4 ( 1 ): 22.
dc.identifier.citedreferenceNielsen HL, Nielsen H, Ejlertsen T, et al. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. PLoS One. 2011; 6 ( 8 ): e23858.
dc.identifier.citedreferenceNattramilarasu PK, Bücker R, Lobo de Sá FD, et al. Campylobacter concisus impairs sodium absorption in colonic epithelium via ENaC dysfunction and claudin-8 disruption. Int J Mol Sci. 2020; 21 ( 2 ): 373.
dc.identifier.citedreferenceIsmail Y, Lee H, Riordan SM, Grimm MC, Zhang L. The effects of oral and enteric Campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS One. 2013; 8 ( 2 ): e56888.
dc.identifier.citedreferenceDeshpande NP, Wilkins MR, Castaño-Rodríguez N, et al. Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells. Sci Rep. 2016; 6: 34288.
dc.identifier.citedreferenceIstivan TS, Coloe PJ, Fry BN, Ward P, Smith SC. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates of Campylobacter concisus. J Med Microbiol. 2004; 53 ( Pt 6 ): 483 - 493.
dc.identifier.citedreferenceKaakoush NO, Deshpande NP, Man SM, et al. Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immun. 2015; 83 ( 2 ): 832 - 845.
dc.identifier.citedreferenceSorensen NB, Nielsen HL, Varming K, Nielsen H. Neutrophil activation by Campylobacter concisus. Gut Pathog. 2013; 5 ( 1 ): 17.
dc.identifier.citedreferenceAabenhus R, Stenram U, Andersen LP, Permin H, Ljungh A. First attempt to produce experimental Campylobacter concisus infection in mice. World J Gastroenterol. 2008; 14 ( 45 ): 6954 - 6959.
dc.identifier.citedreferenceBarmeyer C, Erko I, Awad K, et al. Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. J Gastroenterol. 2017; 52 ( 10 ): 1090 - 1100.
dc.identifier.citedreferenceJackson MS, Bagg J, Gupta MN, Sturrock RD. Oral carriage of staphylococci in patients with rheumatoid arthritis. Rheumatology. 1999; 38 ( 6 ): 572 - 575.
dc.identifier.citedreferenceOhara-Nemoto Y, Haraga H, Kimura S, Nemoto TK. Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. J Med Microbiol. 2008; 57 ( Pt 1 ): 95 - 99.
dc.identifier.citedreferencePinchuk IV, Beswick EJ, Reyes VE. Staphylococcal enterotoxins. Toxins. 2010; 2 ( 8 ): 2177 - 2197.
dc.identifier.citedreferenceBrito F, Zaltman C, Carvalho ATP, et al. Subgingival microflora in inflammatory bowel disease patients with untreated periodontitis. Eur J Gastroenterol Hepatol. 2013; 25 ( 2 ): 239 - 245.
dc.identifier.citedreferenceMisawa Y, Kelley KA, Wang X, et al. Staphylococcus aureus colonization of the mouse gastrointestinal tract is modulated by wall teichoic acid, capsule, and surface proteins. PLoS Pathog. 2015; 11 ( 7 ): e1005061.
dc.identifier.citedreferencePerez-Bosque A, Moreto M. A rat model of mild intestinal inflammation induced by Staphylococcus aureus enterotoxin B. Proc Nutr Soc. 2010; 69 ( 3 ): 447 - 453.
dc.identifier.citedreferenceLarcombe S, Jiang JH, Hutton ML, Abud HE, Peleg AY, Lyras D. A mouse model of Staphylococcus aureus small intestinal infection. J Med Microbiol. 2020; 69 ( 2 ): 290 - 297.
dc.identifier.citedreferenceKitamoto S, Nagao-Kitamoto H, Jiao Y, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell. 2020; 182 ( 2 ): 447 - 62 e14.
dc.identifier.citedreferenceImhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2016; 65 ( 5 ): 740 - 748.
dc.identifier.citedreferenceJackson MA, Goodrich JK, Maxan M-E, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016; 65 ( 5 ): 749 - 756.
dc.identifier.citedreferenceKitamoto S, Alteri CJ, Rodrigues M, et al. Dietary L-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nat Microbiol. 2020; 5 ( 1 ): 116 - 125.
dc.identifier.citedreferenceWinter SE, Winter MG, Xavier MN, et al. Host-derived nitrate boosts growth of E coli in the inflamed gut. Science. 2013; 339 ( 6120 ): 708 - 711.
dc.identifier.citedreferenceZhu W, Winter MG, Byndloss MX, et al. Precision editing of the gut microbiota ameliorates colitis. Nature. 2018; 553 ( 7687 ): 208 - 211.
dc.identifier.citedreferenceWashio J, Shimada Y, Yamada M, Sakamaki R, Takahashi N. Effects of pH and lactate on hydrogen sulfide production by oral Veillonella spp. Appl Environ Microbiol. 2014; 80 ( 14 ): 4184 - 4188.
dc.identifier.citedreferenceTagaino R, Washio J, Abiko Y, Tanda N, Sasaki K, Takahashi N. Metabolic property of acetaldehyde production from ethanol and glucose by oral Streptococcus and Neisseria. Sci Rep. 2019; 9 ( 1 ): 10446.
dc.identifier.citedreferenceAlvarez R, Stork CA, Sayoc-Becerra A, Marchelletta RR, Prisk GK, McCole DF. A simulated microgravity environment causes a sustained defect in epithelial barrier function. Sci Rep. 2019; 9 ( 1 ): 17531.
dc.identifier.citedreferenceDunagan M, Chaudhry K, Samak G, Rao RK. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2012; 303 ( 12 ): G1356 - G1364.
dc.identifier.citedreferenceLemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019; 7 ( 1 ). doi: 10.1128/microbiolspec.GPP3-0051-2018
dc.identifier.citedreferenceChen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial etiology and prevention of dental caries: exploiting natural products to inhibit cariogenic biofilms. Pathogens. 2020; 9 ( 7 ): 569.
dc.identifier.citedreferenceSzymanska S, Lordal M, Rathnayake N, Gustafsson A, Johannsen A. Dental caries, prevalence and risk factors in patients with Crohn’s disease. PLoS One. 2014; 9 ( 3 ): e91059.
dc.identifier.citedreferenceKojima A, Nakano K, Wada K, et al. Infection of specific strains of Streptococcus mutans, oral bacteria, confers a risk of ulcerative colitis. Sci Rep. 2012; 2: 332.
dc.identifier.citedreferenceKrebs C, Paust H-J, Krohn S, et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity. 2016; 45 ( 5 ): 1078 - 1092.
dc.identifier.citedreferenceTajik N, Frech M, Schulz O, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 2020; 11 ( 1 ): 1995.
dc.identifier.citedreferenceLee K-C, Chen P, Maricic I, et al. Intestinal iNKT cells migrate to liver and contribute to hepatocyte apoptosis during alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2019; 316 ( 5 ): G585 - G597.
dc.identifier.citedreferenceMorton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci USA. 2014; 111 ( 18 ): 6696 - 6701.
dc.identifier.citedreferenceDutzan N, Abusleme L. T helper 17 cells as pathogenic drivers of periodontitis. Adv Exp Med Biol. 2019; 1197: 107 - 117.
dc.identifier.citedreferenceDutzan N, Kajikawa T, Abusleme L, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med. 2018; 10 ( 463 ):eaat0797.
dc.identifier.citedreferenceTomura M, Yoshida N, Tanaka J, et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein "Kaede" transgenic mice. Proc Natl Acad Sci USA. 2008; 105 ( 31 ): 10871 - 10876.
dc.identifier.citedreferenceBerlin C, Berg EL, Briskin MJ, et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell. 1993; 74 ( 1 ): 185 - 195.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.