Show simple item record

Globally, tree fecundity exceeds productivity gradients

dc.contributor.authorJourné, Valentin
dc.contributor.authorAndrus, Robert
dc.contributor.authorAravena, Marie-Claire
dc.contributor.authorAscoli, Davide
dc.contributor.authorBerretti, Roberta
dc.contributor.authorBerveiller, Daniel
dc.contributor.authorBogdziewicz, Michal
dc.contributor.authorBoivin, Thomas
dc.contributor.authorBonal, Raul
dc.contributor.authorCaignard, Thomas
dc.contributor.authorCalama, Rafael
dc.contributor.authorCamarero, Jesús Julio
dc.contributor.authorChang-Yang, Chia-Hao
dc.contributor.authorCourbaud, Benoit
dc.contributor.authorCourbet, Francois
dc.contributor.authorCurt, Thomas
dc.contributor.authorDas, Adrian J.
dc.contributor.authorDaskalakou, Evangelia
dc.contributor.authorDavi, Hendrik
dc.contributor.authorDelpierre, Nicolas
dc.contributor.authorDelzon, Sylvain
dc.contributor.authorDietze, Michael
dc.contributor.authorDonoso Calderon, Sergio
dc.contributor.authorDormont, Laurent
dc.contributor.authorMaria Espelta, Josep
dc.contributor.authorFahey, Timothy J.
dc.contributor.authorFarfan-Rios, William
dc.contributor.authorGehring, Catherine A.
dc.contributor.authorGilbert, Gregory S.
dc.contributor.authorGratzer, Georg
dc.contributor.authorGreenberg, Cathryn H.
dc.contributor.authorGuo, Qinfeng
dc.contributor.authorHacket-Pain, Andrew
dc.contributor.authorHampe, Arndt
dc.contributor.authorHan, Qingmin
dc.contributor.authorLambers, Janneke Hille Ris
dc.contributor.authorHoshizaki, Kazuhiko
dc.contributor.authorIbanez, Ines
dc.contributor.authorJohnstone, Jill F.
dc.contributor.authorKabeya, Daisuke
dc.contributor.authorKays, Roland
dc.contributor.authorKitzberger, Thomas
dc.contributor.authorKnops, Johannes M. H.
dc.contributor.authorKobe, Richard K.
dc.contributor.authorKunstler, Georges
dc.contributor.authorLageard, Jonathan G. A.
dc.contributor.authorLaMontagne, Jalene M.
dc.contributor.authorLeininger, Theodor
dc.contributor.authorLimousin, Jean-Marc
dc.contributor.authorLutz, James A.
dc.contributor.authorMacias, Diana
dc.contributor.authorMcIntire, Eliot J. B.
dc.contributor.authorMoore, Christopher M.
dc.contributor.authorMoran, Emily
dc.contributor.authorMotta, Renzo
dc.contributor.authorMyers, Jonathan A.
dc.contributor.authorNagel, Thomas A.
dc.contributor.authorNoguchi, Kyotaro
dc.contributor.authorOurcival, Jean-Marc
dc.contributor.authorParmenter, Robert
dc.contributor.authorPearse, Ian S.
dc.contributor.authorPerez-Ramos, Ignacio M.
dc.contributor.authorPiechnik, Lukasz
dc.contributor.authorPoulsen, John
dc.contributor.authorPoulton-Kamakura, Renata
dc.contributor.authorQiu, Tong
dc.contributor.authorRedmond, Miranda D.
dc.contributor.authorReid, Chantal D.
dc.contributor.authorRodman, Kyle C.
dc.contributor.authorRodriguez-Sanchez, Francisco
dc.contributor.authorSanguinetti, Javier D.
dc.contributor.authorScher, C. Lane
dc.contributor.authorMarle, Harald Schmidt Van
dc.contributor.authorSeget, Barbara
dc.contributor.authorSharma, Shubhi
dc.contributor.authorSilman, Miles
dc.contributor.authorSteele, Michael A.
dc.contributor.authorStephenson, Nathan L.
dc.contributor.authorStraub, Jacob N.
dc.contributor.authorSwenson, Jennifer J.
dc.contributor.authorSwift, Margaret
dc.contributor.authorThomas, Peter A.
dc.contributor.authorUriarte, Maria
dc.contributor.authorVacchiano, Giorgio
dc.contributor.authorVeblen, Thomas T.
dc.contributor.authorWhipple, Amy V.
dc.contributor.authorWhitham, Thomas G.
dc.contributor.authorWright, Boyd
dc.contributor.authorWright, S. Joseph
dc.contributor.authorZhu, Kai
dc.contributor.authorZimmerman, Jess K.
dc.contributor.authorZlotin, Roman
dc.contributor.authorZywiec, Magdalena
dc.contributor.authorClark, James S.
dc.date.accessioned2022-06-01T20:31:16Z
dc.date.available2023-07-01 16:31:13en
dc.date.available2022-06-01T20:31:16Z
dc.date.issued2022-06
dc.identifier.citationJourné, Valentin ; Andrus, Robert; Aravena, Marie-Claire ; Ascoli, Davide; Berretti, Roberta; Berveiller, Daniel; Bogdziewicz, Michal; Boivin, Thomas; Bonal, Raul; Caignard, Thomas; Calama, Rafael; Camarero, Jesús Julio ; Chang-Yang, Chia-Hao ; Courbaud, Benoit; Courbet, Francois; Curt, Thomas; Das, Adrian J.; Daskalakou, Evangelia; Davi, Hendrik; Delpierre, Nicolas; Delzon, Sylvain; Dietze, Michael; Donoso Calderon, Sergio; Dormont, Laurent; Maria Espelta, Josep; Fahey, Timothy J.; Farfan-Rios, William ; Gehring, Catherine A.; Gilbert, Gregory S.; Gratzer, Georg; Greenberg, Cathryn H.; Guo, Qinfeng; Hacket-Pain, Andrew ; Hampe, Arndt; Han, Qingmin; Lambers, Janneke Hille Ris; Hoshizaki, Kazuhiko; Ibanez, Ines; Johnstone, Jill F.; Kabeya, Daisuke; Kays, Roland; Kitzberger, Thomas; Knops, Johannes M. H.; Kobe, Richard K.; Kunstler, Georges; Lageard, Jonathan G. A.; LaMontagne, Jalene M.; Leininger, Theodor; Limousin, Jean-Marc ; Lutz, James A.; Macias, Diana; McIntire, Eliot J. B.; Moore, Christopher M.; Moran, Emily; Motta, Renzo; Myers, Jonathan A.; Nagel, Thomas A.; Noguchi, Kyotaro; Ourcival, Jean-Marc ; Parmenter, Robert; Pearse, Ian S.; Perez-Ramos, Ignacio M. ; Piechnik, Lukasz; Poulsen, John; Poulton-Kamakura, Renata ; Qiu, Tong; Redmond, Miranda D.; Reid, Chantal D.; Rodman, Kyle C.; Rodriguez-Sanchez, Francisco ; Sanguinetti, Javier D.; Scher, C. Lane; Marle, Harald Schmidt Van; Seget, Barbara; Sharma, Shubhi; Silman, Miles; Steele, Michael A.; Stephenson, Nathan L.; Straub, Jacob N.; Swenson, Jennifer J.; Swift, Margaret; Thomas, Peter A.; Uriarte, Maria; Vacchiano, Giorgio; Veblen, Thomas T.; Whipple, Amy V.; Whitham, Thomas G.; Wright, Boyd; Wright, S. Joseph; Zhu, Kai; Zimmerman, Jess K.; Zlotin, Roman; Zywiec, Magdalena; Clark, James S. (2022). "Globally, tree fecundity exceeds productivity gradients." Ecology Letters (6): 1471-1482.
dc.identifier.issn1461-023X
dc.identifier.issn1461-0248
dc.identifier.urihttps://hdl.handle.net/2027.42/172854
dc.description.abstractLack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven by a 100-fold increase in seed production for a given tree size. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherclimate
dc.subject.othercompetition
dc.subject.otherforest regeneration
dc.subject.otherseed consumption
dc.subject.otherspecies interactions
dc.subject.othertree fecundity
dc.titleGlobally, tree fecundity exceeds productivity gradients
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172854/1/ele14012-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172854/2/ele14012.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172854/3/ele14012_am.pdf
dc.identifier.doi10.1111/ele.14012
dc.identifier.sourceEcology Letters
dc.identifier.citedreferenceClark, J.S. ( 1990 a) Integration of ecological levels: Individual plant growth, population mortality and ecosystem processes. Journal of Ecology, 78, 275 – 299.
dc.identifier.citedreferenceVacchiano, G., Ascoli, D., Berzaghi, F., Lucas-Borja, M.E., Caignard, T., Collalti, A. et al. ( 2018 ) Reproducing reproduction: How to simulate mast seeding in forest models. Ecological Modelling, 376, 40 – 53.
dc.identifier.citedreferenceTobin, B.Y.J. ( 1985 ) Estimation of relationships for limited dependent variables. Econometrica, 26, 24 – 36.
dc.identifier.citedreferenceTerborgh, J. ( 1986 ) Community aspects of frugivory in tropical forests, Dordrecht: Springer, vol. 15 of Tasks for Vegetation Science.
dc.identifier.citedreferenceCaignard, T., Kremer, A., Firmat, C., Nicolas, M., Venner, S. & Delzon, S. ( 2017 ) Increasing spring temperatures favor oak seed production in temperate areas. Scientific Reports, 7, 1 – 8.
dc.identifier.citedreferenceBrienen, R.J.W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M. et al. ( 2020 ) Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature Communications, 11, 1 – 10.
dc.identifier.citedreferenceBogdziewicz, M., Kelly, D., Thomas, P.A., Lageard, J.G. & Hacket-Pain, A. ( 2020 ) Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants, 6, 88 – 94.
dc.identifier.citedreferenceBogdziewicz, M., Fernández-Martínez, M., Espelta, J.M., Ogaya, R. & Penuelas, J. ( 2020 ) Is forest fecundity resistant to drought? Results from an 18-yr rainfall-reduction experiment. New Phytologist, 227, 1073 – 1080.
dc.identifier.citedreferenceBerdanier, A.B. & Clark, J.S. ( 2016 ) Divergent reproductive allocation trade-offs with canopy exposure across tree species in temperate forests. Ecosphere, 7, e01313. Available from: https://doi.org/10.1002/ecs2.1313
dc.identifier.citedreferenceAssmann, E. ( 1970 ). The principles of forest yield study. Studies in the organic production, structure, increment and yield of forest stands. Amsterdam: Elsevier. ISBN: 9781483150932.
dc.identifier.citedreferenceAbatzoglou, J.T., Dobrowski, S.Z., Parks, S.A. & Hegewisch, K.C. ( 2018 ) Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5, 170191.
dc.identifier.citedreferenceYeoh, S.H., Satake, A., Numata, S., Ichie, T., Lee, S.L., Basherudin, N. et al. ( 2017 ) Unravelling proximate cues of mass flowering in the tropical forests of South-East Asia from gene expression analyses. Molecular Ecology, 26, 5074 – 5085.
dc.identifier.citedreferenceWhitham, T.G., Allan, G.J., Cooper, H.F. & Shuster, S.M. ( 2020 ) Intraspecific genetic variation and species interactions contribute to community evolution. Annual Review of Ecology, Evolution, and Systematics, 51, 587 – 612.
dc.identifier.citedreferenceStephenson, N.L. & Van Mantgem, P.J. ( 2005 ) Forest turnover rates follow global and regional patterns of productivity. Ecology Letters, 8, 524 – 531.
dc.identifier.citedreferenceSitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W. et al. ( 2003 ) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161 – 185.
dc.identifier.citedreferenceSitch, S., Friedlingstein, P., Gruber, N., Jones, S.D., Murray-Tortarolo, G., Ahlström, A. et al. ( 2015 ) Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12, 653 – 679.
dc.identifier.citedreferenceSharma, S., Bergeron, Y., Bogdziewicz, M., Bragg, D., Brockway, D., Cleavitt, N. et al. ( 2021 ) North American tree migration paced by recruitment through contrasting east-west mechanisms. Proceedings of the National Academy of Sciences, 119, e2116691118.
dc.identifier.citedreferenceSchemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. ( 2009 ) Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245 – 269.
dc.identifier.citedreferenceSala, A., Hopping, K., McIntire, E.J.B., Delzon, S. & Crone, E.E. ( 2012 ) Masting in whitebark pine ( Pinus albicaulis ) depletes stored nutrients. New Phytologist, 196, 189 – 199.
dc.identifier.citedreferenceRunning, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M. & Hashimoto, H. ( 2004 ) A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547 – 560.
dc.identifier.citedreferenceRosenblatt, A.E. & Schmitz, O.J. ( 2016 ) Climate change, nutrition, and bottom-up and top-down food web processes. Trends in Ecology and Evolution, 31, 965 – 975.
dc.identifier.citedreferenceR Core Team ( 2020 ) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceQiu, T., Aravena, M.-C., Andrus, R., Ascoli, D., Bergeron, Y., Berretti, R. et al. ( 2021 ) Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 118, 1 – 10.
dc.identifier.citedreferencePincheira-Donoso, D. & Hunt, J. ( 2015 ) Fecundity selection theory: concepts and evidence. Biological Reviews of the Cambridge Philosophical Society, 92, 341 – 356.
dc.identifier.citedreferencePhillips, O.L. & Gentry, A.H. ( 1994 ) Increasing turnover through time in tropical forests. Science, 263, 954 – 958.
dc.identifier.citedreferencePearse, I.S., LaMontagne, J.M., Lordon, M., Hipp, A.L. & Koenig, W.D. ( 2020 ) Biogeography and phylogeny of masting: do global patterns fit functional hypotheses? New Phytologist, 227, 1557 – 1567.
dc.identifier.citedreferenceOstfeld, R.S. & Keesing, F. ( 2000 ) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends in Ecology and Evolution, 15, 232 – 237.
dc.identifier.citedreferenceOlson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C. et al. ( 2001 ) Terrestrial ecoregions of the world: a new map of life on Earth. BioScience, 51, 933 – 938.
dc.identifier.citedreferenceObeso, J.R. ( 2002 ) The costs of reproduction in plants. New Phytologist, 155, 321 – 348.
dc.identifier.citedreferenceMoles, A.T., Wright, I.J., Pitman, A.J., Murray, B.R. & Westoby, M. ( 2009 ) Is there a latitudinal gradient in seed production? Ecography, 32, 78 – 82.
dc.identifier.citedreferenceMokany, K., Prasad, S. & Westcott, D.A. ( 2014 ) Loss of frugivore seed dispersal services under climate change. Nature Communications, 5, 3971.
dc.identifier.citedreferenceMinor, D.M. & Kobe, R.K. ( 2019 ) Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecology and Evolution, 9, 1458 – 1472.
dc.identifier.citedreferenceMendoza, I., Condit, R.S., Wright, S.J., Caubère, A., Ch-telet, P., Hardy, I. et al. ( 2018 ) Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): insights from hierarchical Bayesian analyses. Biotropica, 50, 431 – 441.
dc.identifier.citedreferenceLocosselli, G.M., Brienen, R.J.W., Leite, M.D.S., Gloor, M., Krottenthaler, S., Oliveira, A.A.D. et al. ( 2020 ) Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences, 117, 33358 – 33364.
dc.identifier.citedreferenceLewis, S.L., Phillips, O.L., Sheil, D., Vinceti, B., Baker, T.R., Brown, S. et al. ( 2004 ) Tropical forest tree mortality, recruitment and turnover rates: Calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 92, 929 – 944.
dc.identifier.citedreferenceLevi, T., Barfield, M., Barrantes, S., Sullivan, C., Holt, R.D. & Terborgh, J. ( 2019 ) Tropical forests can maintain hyperdiversity because of enemies. Proceedings of the National Academy of Sciences, 116, 581 – 586.
dc.identifier.citedreferenceLauder, J.D., Moran, E.V. & Hart, S.C. ( 2019 ) Fight or flight? potential tradeoffs between drought defense and reproduction in conifers. Tree Physiology, 39, 1071 – 1085.
dc.identifier.citedreferenceLaMontagne, J.M., Pearse, I.S., Greene, D.F. & Koenig, W.D. ( 2020 ) Mast seeding patterns are asynchronous at a continental scale. Nature Plants, 6, 460 – 465.
dc.identifier.citedreferenceKrinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P. et al. ( 2005 ) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, 1 – 33.
dc.identifier.citedreferenceKoenig, W.D. ( 2021 ) A brief history of masting research. Philosophical Transactions of the Royal Society B: Biological Sciences, 376, 20200423.
dc.identifier.citedreferenceKoch, G.W., Sillett, S.C., Jennings, G.M. & Davis, S.D. ( 2004 ) The limits to tree height. Nature, 428, 851 – 854.
dc.identifier.citedreferenceKing, D.A., Davies, S.J., Tan, S. & Nur Supardi, M.N. ( 2009 ) Trees approach gravitational limits to height in tall lowland forests of Malaysia. Functional Ecology, 23, 284 – 291.
dc.identifier.citedreferenceKattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P. et al. ( 2020 ) TRY plant trait database – enhanced coverage and open access. Global Change Biology, 26, 119 – 188.
dc.identifier.citedreferenceKarger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W. et al. ( 2017 ) Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 1 – 20.
dc.identifier.citedreferenceJanzen, D. ( 1970 ) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501 – 528.
dc.identifier.citedreferenceHille Ris Lambers, J., Clark, J.S. & Beckage, B. ( 2002 ) Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732 – 735.
dc.identifier.citedreferenceHengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A. et al. ( 2017 ) SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12, e0169748.
dc.identifier.citedreferenceHazelton, P. & Murphy, B. ( 2007 ). Interpreting soil test results: what do all the numbers mean ? Clayton: CSIRO publishing.
dc.identifier.citedreferenceHarms, K.E., Wright, S.J., Calderón, O., Hernández, A. & Herre, E.A. ( 2000 ) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493 – 495.
dc.identifier.citedreferenceHargreaves, A.L., Suárez, E., Mehltreter, K., Myers-Smith, I., Vanderplank, S.E., Slinn, H.L. et al. ( 2019 ) Seed predation increases from the Arctic to the Equator and from high to low elevations. Science Advances, 5, 1 – 11.
dc.identifier.citedreferenceHanbury-Brown, A., Ward, R. & Kueppers, L.M. ( 2022 ) Future forests within earth system models: regeneration processes critical to prediction. New Phytologist, in Press.
dc.identifier.citedreferenceGruntman, M., Groß, D., Májeková, M. & Tielbörger, K. ( 2017 ) Decision-making in plants under competition. Nature Communications, 8, 2235.
dc.identifier.citedreferenceGreen, P.T., Harms, K.E. & Connell, J.H. ( 2014 ) Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proceedings of the National Academy of Sciences, 111, 18649 – 18654.
dc.identifier.citedreferenceGesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M. & Tyler, D. ( 2002 ). The national elevation dataset. Photogrammetric Engineering and Remote Sensing, 68, 5 – 11.
dc.identifier.citedreferenceFridley, J.D. ( 2017 ) Plant energetics and the synthesis of population and ecosystem ecology. Journal of Ecology, 105, 95 – 110.
dc.identifier.citedreferenceFisher, R.A., Koven, C.D., Anderegg, W.R.L., Christoffersen, B.O., Dietze, M.C., Farrior, C.E. et al. ( 2018 ) Vegetation demographics in Earth System Models: a review of progress and priorities. Global Change Biology, 24, 35 – 54.
dc.identifier.citedreferenceFarr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S. et al. ( 2007 ) The shuttle radar topography mission. Reviews of Geophysics, 45, RG2004. Available from: https://doi.org/10.1029/2005RG000183
dc.identifier.citedreferenceDel Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S. et al. ( 2008 ) Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89, 2117 – 2126.
dc.identifier.citedreferenceDawkins, R. & Krebs, J.R. ( 1979 ). Arms races between and within species. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 489 – 511.
dc.identifier.citedreferenceCorlett, R.T. ( 2013 ) The shifted baseline: prehistoric defaunation in the tropics and its consequences for biodiversity conservation. Biological Conservation, 163, 13 – 21.
dc.identifier.citedreferenceClark, J.S., Nuñez, C.L. & Tomasek, B. ( 2019 ) Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecological Monographs, 89, 1 – 24.
dc.identifier.citedreferenceClark, J.S., LaDeau, S. & Ibanez, I. ( 2004 ) Fecundity of trees and the colonization-competition hypothesis. Ecological Monographs, 74, 415 – 442.
dc.identifier.citedreferenceClark, J.S., Bell, D.M., Kwit, M.C. & Zhu, K. ( 2014 ) Competition-interaction landscapes for the joint response of forests to climate change. Global Change Biology, 20, 1979 – 1991.
dc.identifier.citedreferenceClark, J.S., Andrus, R., Aubry-Kientz, M., Bergeron, Y., Bogdziewicz, M., Bragg, D.C. et al. ( 2021 ) Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 12, 1 – 11.
dc.identifier.citedreferenceClark, J.S. ( 1990 b) Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry, 11, 1 – 22.
dc.identifier.citedreferenceWestoby, M., Jurado, E. & Leishman, M. ( 1992 ) Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution, 7, 368 – 372.
dc.identifier.citedreferenceChu, C., Lutz, J.A., Král, K., Vrška, T., Yin, X., Myers, J.A. et al. ( 2019 ) Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 22, 245 – 255.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.