Show simple item record

Improving large-scale estimation and inference for profiling health care providers

dc.contributor.authorWu, Wenbo
dc.contributor.authorYang, Yuan
dc.contributor.authorKang, Jian
dc.contributor.authorHe, Kevin
dc.date.accessioned2022-07-05T21:00:54Z
dc.date.available2023-08-05 17:00:52en
dc.date.available2022-07-05T21:00:54Z
dc.date.issued2022-07-10
dc.identifier.citationWu, Wenbo; Yang, Yuan; Kang, Jian; He, Kevin (2022). "Improving large-scale estimation and inference for profiling health care providers." Statistics in Medicine 41(15): 2840-2853.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/172963
dc.description.abstractProvider profiling has been recognized as a useful tool in monitoring health care quality, facilitating inter-provider care coordination, and improving medical cost-effectiveness. Existing methods often use generalized linear models with fixed provider effects, especially when profiling dialysis facilities. As the number of providers under evaluation escalates, the computational burden becomes formidable even for specially designed workstations. To address this challenge, we introduce a serial blockwise inversion Newton algorithm exploiting the block structure of the information matrix. A shared-memory divide-and-conquer algorithm is proposed to further boost computational efficiency. In addition to the computational challenge, the current literature lacks an appropriate inferential approach to detecting providers with outlying performance especially when small providers with extreme outcomes are present. In this context, traditional score and Wald tests relying on large-sample distributions of the test statistics lead to inaccurate approximations of the small-sample properties. In light of the inferential issue, we develop an exact test of provider effects using exact finite-sample distributions, with the Poisson-binomial distribution as a special case when the outcome is binary. Simulation analyses demonstrate improved estimation and inference over existing methods. The proposed methods are applied to profiling dialysis facilities based on emergency department encounters using a dialysis patient database from the Centers for Medicare & Medicaid Services.
dc.publisherMassachusetts Medical Society
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPoisson-binomial distribution
dc.subject.otherexact test
dc.subject.otherparallel computing
dc.subject.otherdivide-and-conquer
dc.subject.otheremergency department encounters
dc.titleImproving large-scale estimation and inference for profiling health care providers
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172963/1/SIM9387-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172963/2/sim9387.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172963/3/sim9387_am.pdf
dc.identifier.doi10.1002/sim.9387
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferencePrentice RL, Gloeckler LA. Regression analysis of grouped survival data with application to breast cancer data. Biometrics. 1978; 34 ( 1 ): 57 - 67.
dc.identifier.citedreferenceHorwitz L, Partovain C, Lin Z, et al. Hospital-wide all-cause risk-standardized readmission measure: DRAFT measure methodology report. Submitted by Yale New Haven health services corporation/center for outcomes research & evaluation (YNHHSC/CORE); 2011. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/MMS/downloads/MMSHospital-WideAll-ConditionReadmissionRate.pdf. Accessed December 01, 2020.
dc.identifier.citedreferenceVarewyck M, Goetghebeur E, Eriksson M, Vansteelandt S. On shrinkage and model extrapolation in the evaluation of clinical center performance. Biostatistics. 2014; 15 ( 4 ): 651 - 664.
dc.identifier.citedreferenceKalbfleisch JD, He K. Discussion on "Time-dynamic profiling with application to hospital readmission among patients on dialysis". by Estes J. P, Nguyen D. V, Chen Y, Dalrymple L. S, Rhee C. M, Kalantar-Zadeh K, Şentürk D. Biometrics. 2018; 74 ( 4 ): 1401 - 1403.
dc.identifier.citedreferenceDobson AJ, Barnett AG. An Introduction to Generalized Linear Models. 4th ed. Boca Raton, FL: CRC Press; 2018.
dc.identifier.citedreferenceDe Leeuw J. Block-relaxation algorithms in statistics. Information Systems and Data Analysis. New York, NY: Springer; 1994: 308 - 324.
dc.identifier.citedreferenceLange K. Optimization. 2nd ed. New York, NY: Springer; 2013.
dc.identifier.citedreferenceDe Leeuw J. Block relaxation methods in statistics. https://bookdown.org/jandeleeuw6/bras/. Accessed December 01, 2020.
dc.identifier.citedreferenceHe K, Kalbfleisch JD, Yang Y, Fei Z. Inter-unit reliability for nonlinear models. Stat Med. 2019; 38 ( 5 ): 844 - 854.
dc.identifier.citedreferenceHe K, Dahlerus C, Xia L, Li Y, Kalbfleisch JD. The profile inter-unit reliability. Biometrics. 2020; 76 ( 2 ): 654 - 663.
dc.identifier.citedreferenceGallant AR. Nonlinear Statistical Models. Hoboken, NJ: John Wiley & Sons; 1987.
dc.identifier.citedreferenceBoos DD, Stefanski LA. Essential Statistical Inference. New York, NY: Springer; 2013.
dc.identifier.citedreferenceChen SX, Liu JS. Statistical applications of the Poisson-binomial and conditional Bernoulli distributions. Stat Sin. 1997; 7 ( 2 ): 875 - 892.
dc.identifier.citedreferenceJohnson NL, Kemp AW, Kotz S. Univariate Discrete Distributions. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2005.
dc.identifier.citedreferenceKalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2002.
dc.identifier.citedreferenceBoyd S, Vandenberghe L. Convex Optimization. 2nd ed. Cambridge, UK: Cambridge University Press; 2004.
dc.identifier.citedreferenceR Core Team. R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2022 https://www.R-project.org
dc.identifier.citedreferenceEddelbuettel D, François R. Rcpp: seamless R and C++ integration. J Stat Softw. 2011; 40 ( 8 ): 1 - 18.
dc.identifier.citedreferenceEddelbuettel D, Balamuta JJ. Extending R with C++: a brief introduction to Rcpp. Am Stat. 2018; 72 ( 1 ): 28 - 36.
dc.identifier.citedreferenceEddelbuettel D, Sanderson C. RcppArmadillo: accelerating R with high-performance C++ linear algebra. Comput Stat Data Anal. 2014; 71: 1054 - 1063.
dc.identifier.citedreferenceXia L, He K, Li Y, Kalbfleisch JD. Accounting for total variation and robustness in profiling health care providers. Biostatistics. 2022; 23 ( 1 ): 257 - 273.
dc.identifier.citedreferenceFleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2013.
dc.identifier.citedreferenceHong Y. poibin: the Poisson binomial distribution. R package version 1.5; 2020. https://cran.r-project.org/package=poibin.
dc.identifier.citedreferenceHong Y. On computing the distribution function for the Poisson binomial distribution. Comput Stat Data Anal. 2013; 59: 41 - 51.
dc.identifier.citedreferenceSalerno S, Messana JM, Gremel GW, et al. COVID-19 risk factors and mortality outcomes among medicare patients receiving long-term dialysis. JAMA Netw Open. 2021; 4 ( 11 ):- e2135379.
dc.identifier.citedreferenceAgency for Healthcare Research and Quality. Clinical Classifications Software (CCS) for ICD-10-PCS procedures, v2019.1 (beta version); 2019. https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp. Accessed January 17, 2022.
dc.identifier.citedreferenceEfron B. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J Am Stat Assoc. 2004; 99 ( 465 ): 96 - 104.
dc.identifier.citedreferenceEfron B. Size, power and false discovery rates. Ann Stat. 2007; 35 ( 4 ): 1351 - 1377.
dc.identifier.citedreferenceKidney Epidemiology and Cost Center. Guide to the quarterly dialysis facility compare – Preview report for October 2020. https://dialysisdata.org/sites/default/files/content/DFC_Guide_October2020.pdf Accessed August 19, 2020.
dc.identifier.citedreferenceAsh AS, Fienberg SF, Louis TA, Normand SLT, Stukel TA, Utts J. Statistical issues in assessing hospital performance. commissioned by the committee of presidents of statistical societies the COPSS-CMS white paper committee; 2012. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/HospitalQualityInits/Downloads/Statistical-Issues-in-Assessing-Hospital-Performance.pdf
dc.identifier.citedreferenceMcGee G, Schildcrout J, Normand S-L, Haneuse S. Outcome-dependent sampling in cluster-correlated data settings with application to hospital profiling. J R Stat Soc Ser A Stat Soc. 2020; 183 ( 1 ): 379 - 402.
dc.identifier.citedreferenceAuerbach BS, Bell K, Bloomberg M, et al. Principles for Profiling Physician Performance. Waltham, MA: Massachusetts Medical Society; 1999.
dc.identifier.citedreferenceJones HE, Spiegelhalter DJ. The identification of "unusual" health-care providers from a hierarchical model. Am Stat. 2011; 65 ( 3 ): 154 - 163.
dc.identifier.citedreferenceGoldfield N, Gnani S, Majeed A. Profiling performance in primary care in the United States. BMJ. 2003; 326 ( 7392 ): 744 - 747.
dc.identifier.citedreferenceMajeed A, Lester H, Bindman AB. Improving the quality of care with performance indicators. BMJ. 2007; 335 ( 7626 ): 916 - 918.
dc.identifier.citedreferenceBotje D, Ten AG, Plochg T, et al. Are performance indicators used for hospital quality management: a qualitative interview study amongst health professionals and quality managers in the Netherlands. BMC Health Serv Res. 2016; 16 ( 1 ): 574.
dc.identifier.citedreferenceCenters for Medicare & Medicaid Services. Centers for medicare & medicaid services quality programs; 2020. https://qualitynet.cms.gov. Accessed December 01, 2020.
dc.identifier.citedreferenceCenters for Medicare & Medicaid Services. End-stage renal disease quality incentive program; 2020. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/ESRDQIP/index. Accessed December 01, 2020.
dc.identifier.citedreferenceHarel Z, Wald R, McArthur E, et al. Rehospitalizations and emergency department visits after hospital discharge in patients receiving maintenance hemodialysis. J Am Soc Nephrol. 2015; 26 ( 12 ): 3141 - 3150.
dc.identifier.citedreferenceLovasik BP, Zhang R, Hockenberry JM, et al. Emergency department use and hospital admissions among patients with end-stage renal disease in the United States. JAMA Intern Med. 2016; 176 ( 10 ): 1563 - 1565.
dc.identifier.citedreferenceZhang S, Morgenstern H, Albertus P, Nallamothu BK, He K, Saran R. Emergency department visits and hospitalizations among hemodialysis patients by day of the week and dialysis schedule in the United States. PLoS One. 2019; 14 ( 8 ): e0220966.
dc.identifier.citedreferenceCohen DE, Gray KS, Colson C, Van Wyck DB, Tentori F, Brunelli SM. Impact of rescheduling a missed hemodialysis treatment on clinical outcomes. Kidney Med. 2020; 2 ( 1 ): 12 - 19.
dc.identifier.citedreferenceHe K, Kalbfleisch JD, Li Y, Li Y. Evaluating hospital readmission rates in dialysis facilities; adjusting for hospital effects. Lifetime Data Anal. 2013; 19 ( 4 ): 490 - 512.
dc.identifier.citedreferenceKalbfleisch JD, Wolfe RA. On monitoring outcomes of medical providers. Stat Biosci. 2013; 5 ( 2 ): 286 - 302.
dc.identifier.citedreferenceEstes JP, Nguyen DV, CY, et al. Time-dynamic profiling with application to hospital readmission among patients on dialysis. Biometrics. 2018; 74 ( 4 ): 1383 - 1394.
dc.identifier.citedreferenceEstes JP, Chen Y, Şentürk D, et al. Profiling dialysis facilities for adverse recurrent events. Stat Med. 2020; 39 ( 9 ): 1374 - 1389.
dc.identifier.citedreferenceNormand S-LT, Glickman ME, Gatsonis CA. Statistical methods for profiling providers of medical care: issues and applications. J Am Stat Assoc. 1997; 92 ( 439 ): 803 - 814.
dc.identifier.citedreferenceOhlssen DI, Sharples LD, Spiegelhalter DJ. A hierarchical modelling framework for identifying unusual performance in health care providers. J R Stat Soc Ser A Stat Soc. 2007; 170 ( 4 ): 865 - 890.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.