Show simple item record

Jointly modeling of sleep variables that are objectively measured by wrist actigraphy

dc.contributor.authorXue, Xiaonan
dc.contributor.authorHua, Simin
dc.contributor.authorWeber, Kathleen
dc.contributor.authorQi, Qibin
dc.contributor.authorKaplan, Robert
dc.contributor.authorGustafson, Deborah R.
dc.contributor.authorSharma, Anjali
dc.contributor.authorFrench, Audrey
dc.contributor.authorBurgess, Helen J.
dc.date.accessioned2022-07-05T21:01:51Z
dc.date.available2023-08-05 17:01:49en
dc.date.available2022-07-05T21:01:51Z
dc.date.issued2022-07-10
dc.identifier.citationXue, Xiaonan; Hua, Simin; Weber, Kathleen; Qi, Qibin; Kaplan, Robert; Gustafson, Deborah R.; Sharma, Anjali; French, Audrey; Burgess, Helen J. (2022). "Jointly modeling of sleep variables that are objectively measured by wrist actigraphy." Statistics in Medicine 41(15): 2804-2821.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/172984
dc.description.abstractRecently developed actigraphy devices have made it possible for continuous and objective monitoring of sleep over multiple nights. Sleep variables captured by wrist actigraphy devices include sleep onset, sleep end, total sleep time, wake time after sleep onset, number of awakenings, etc. Currently available statistical methods to analyze such actigraphy data have limitations. First, averages over multiple nights are used to summarize sleep activities, ignoring variability over multiple nights from the same subject. Second, sleep variables are often analyzed independently. However, sleep variables tend to be correlated with each other. For example, how long a subject sleeps at night can be correlated with how long and how frequent he/she wakes up during that night. It is important to understand these inter-relationships. We therefore propose a joint mixed effect model on total sleep time, number of awakenings, and wake time. We develop an estimating procedure based upon a sequence of generalized linear mixed effects models, which can be implemented using existing software. The use of these models not only avoids computational intensity and instability that may occur by directly applying a numerical algorithm on a complicated joint likelihood function, but also provides additional insights on sleep activities. We demonstrated in simulation studies that the proposed estimating procedure performed well in estimating both fixed and random effects’ parameters. We applied the proposed model to data from the Women’s Interagency HIV Sleep Study to examine the association of employment status and age with overall sleep quality assessed by several actigraphy measured sleep variables.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercompound Poisson gamma distribution
dc.subject.otherPoisson distribution with over-dispersion
dc.subject.otherTweedie distribution
dc.subject.othergeneralized linear mixed effects model
dc.titleJointly modeling of sleep variables that are objectively measured by wrist actigraphy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172984/1/sim9385_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/172984/2/sim9385.pdf
dc.identifier.doi10.1002/sim.9385
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceChen J, Patel SR, Redline S, et al. Weekly sleep trajectories and their associations with obesity and hypertension in the Hispanic/Latino population. Sleep. 2018; 41: zsy150. doi: 10.1093/sleep/zsy150
dc.identifier.citedreferencePatel SR, Malhotra A, White DP, Gottlieb DJ, Hu FB. Association between reduced sleep and weight gain in women. Am J Epidemiol. 2006; 164: 947 - 954. doi: 10.1093/aje/kwj280
dc.identifier.citedreferenceSpiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999; 354: 1435 - 1439. doi: 10.1016/S0140-6736(99)01376-8
dc.identifier.citedreferenceYaggi HK, Araujo AB, McKinlay JB. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care. 2006; 29: 657 - 661. doi: 10.2337/diacare.29.03.06.dc05-0879
dc.identifier.citedreferenceCespedes EM, Dudley KA, Sotres-Alvarez D, et al. Joint associations of insomnia and sleep duration with prevalent diabetes: the Hispanic community health study/study of Latinos (HCHS/SOL). J Diabetes. 2016; 8: 387 - 397. doi: 10.1111/1753-0407.12308
dc.identifier.citedreferenceAurora RN, Kim JS, Crainiceanu C, et al. Habitual sleep duration and all-cause mortality in a general community sample. Sleep. 2016; 39: 1903 - 1909. doi: 10.5665/sleep.6212
dc.identifier.citedreferenceBuysse DJ, Ancoli-Israel S, Edinger JD, Lichstein KL, Morin CM. Recommendations for a standard research assessment of insomnia. Sleep. 2006; 29: 1155 - 1173.
dc.identifier.citedreferencede Souza L, Benedito-Silva AA, Pires MLN, Poyares D, Tufik S, Calil HM. Further validation of actigraphy for sleep studies. Sleep. 2003; 26: 81 - 85.
dc.identifier.citedreferenceKushida CA, Chang A, Gadkary C, Guilleminault C, Carrillo O, Dement WC. Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients. Sleep Med. 2001; 2: 389 - 396.
dc.identifier.citedreferenceAncoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep. 2003; 26: 342 - 392.
dc.identifier.citedreferencePatel SR, Weng J, Rueschman M, et al. Reproducibility of a standardized actigraphy scoring algorithm for sleep in a U. S. Hispanic/Latino population. Sleep. 2015; 38: 1497 - 1503. doi: 10.5665/sleep.4998
dc.identifier.citedreferenceBathgate CJ, Edinger JD, Wyatt JK, Krystal AD. Objective but not subjective short sleep duration associated with increased risk for hypertension in individuals with insomnia. Sleep. 2016; 39: 1037 - 1045. doi: 10.5665/sleep.5748
dc.identifier.citedreferenceRamos AR, Weng J, Wallace DM, et al. Sleep patterns and hypertension using actigraphy in the Hispanic community health study/study of Latinos. Chest. 2018; 153: 87 - 93. doi: 10.1016/j.chest.2017.09.028
dc.identifier.citedreferenceFranck LS, Johnson LM, Lee K, et al. Sleep disturbances in children with human immunodeficiency virus infection. Pediatrics. 1999; 104: e62. doi: 10.1542/peds.104.5.e62
dc.identifier.citedreferenceBacon MC, von Wyl V, Alden C, et al. The Women’s interagency HIV study: an observational cohort brings clinical sciences to the bench. Clin Diagn Lab Immunol. 2005; 12: 1013 - 1019. doi: 10.1128/CDLI.12.9.1013-1019.2005
dc.identifier.citedreferenceAbbott SM, Weng J, Reid KJ, et al. Sleep timing, stability, and BP in the Sueño ancillary study of the Hispanic community health study/study of Latinos. Chest. 2019; 155: 60 - 68. doi: 10.1016/j.chest.2018.09.018
dc.identifier.citedreferenceLuik AI, Zuurbier LA, Hofman A, et al. Stability and fragmentation of the activity rhythm across the sleep-wake cycle: the importance of age, lifestyle, and mental health. Chronobiol Int. 2013; 30: 1223 - 1230. doi: 10.3109/07420528.2013.813528
dc.identifier.citedreferenceMihaylova B, Briggs A, O’Hagan A, et al. Review of statistical methods for analysing healthcare resources and costs. Health Econ. 2011; 20: 897 - 916. doi: 10.1002/hec.1653
dc.identifier.citedreferenceBasu A, Rathouz PJ. Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics. 2005; 6: 93 - 109. doi: 10.1093/biostatistics/kxh020
dc.identifier.citedreferenceSmyth GK, Jørgensen B. Fitting Tweedie’s compound Poisson model to insurance claims data: dispersion modelling. ASTIN Bull. 2002; 32: 143 - 157. doi: 10.2143/AST.32.1.1020
dc.identifier.citedreferenceKurz CF. Tweedie distributions for fitting semicontinuous health care utilization cost data. BMC Med Res Methodol. 2017; 17: 171. doi: 10.1186/s12874-017-0445-y
dc.identifier.citedreferenceJørgensen B. Exponential dispersion models. J R Stat Soc B Methodol. 1987; 49: 127 - 145. doi: 10.1111/j.2517-6161.1987.tb01685.x
dc.identifier.citedreferenceDelong Ł, Lindholm M, Wüthrich MV. Making Tweedie’s compound Poisson model more accessible. Eur Actuar J. 2021; 11: 185 - 226. doi: 10.1007/s13385-021-00264-3
dc.identifier.citedreferenceLiu Q, Pierce DA. A note on Gauss-Hermite quadrature. Biometrika. 1994; 81: 624 - 629. doi: 10.2307/2337136
dc.identifier.citedreferenceGigante P, Picech L, Sigalotti L. A mixture model for payments and payment numbers in claims reserving. ASTIN Bull. 2016; 48: 25 - 53.
dc.identifier.citedreferenceLee Y, Nelder JA. Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika. 2001; 88: 987 - 1006.
dc.identifier.citedreferenceZhang Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat Comput. 2013; 23: 743 - 757. doi: 10.1007/s11222-012-9343-7
dc.identifier.citedreferenceCarney CE, Buysse DJ, Ancoli-Israel S, et al. The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep. 2012; 35: 287 - 302. doi: 10.5665/sleep.1642
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.