Show simple item record

Detection of climate transitions and discontinuities by Hurst rescaling

dc.contributor.authorLegates, David R.
dc.contributor.authorOutcalt, Samuel I.
dc.date.accessioned2022-08-02T18:55:29Z
dc.date.available2023-08-02 14:55:27en
dc.date.available2022-08-02T18:55:29Z
dc.date.issued2022-07
dc.identifier.citationLegates, David R.; Outcalt, Samuel I. (2022). "Detection of climate transitions and discontinuities by Hurst rescaling." International Journal of Climatology 42(9): 4753-4772.
dc.identifier.issn0899-8418
dc.identifier.issn1097-0088
dc.identifier.urihttps://hdl.handle.net/2027.42/173063
dc.description.abstractThe method of Outcalt et al., based on work developed originally by Hurst, is re-examined to evaluate its efficacy in delineating changes in trends and identifying regime shifts in climatic-related time series. This technique is based on the concept of the normalized rescaled running sum where temporal changes in the Hurst exponent can be used to identify climatic trends from one regime to another as each regime has a characteristic distribution that differs from the statistical characteristics of the complete time series. An examination of the temporal change in the amplitude of the normalized rescaled running sum can be used as a method to identify these regime changes, which may be either real (i.e., a true climatic shift) or induced (i.e., through a change in measurement bias, station location, or other nonclimatic influence). Examples shown here focus on examining time series of the Pacific Decadal Oscillation, Arctic thaw depth, the Northern Hemisphere snow cover extent, treeflow data from Lees Ferry (AZ), North Atlantic tropical cyclone frequency, and central England air temperatures.The method of Outcalt et al. is re-examined to evaluate its efficacy in delineating changes in trends and identifying regime shifts in climatic-related time series. It is based on the normalized rescaled running sum where temporal changes in the Hurst exponent identify climatic trends from one regime to another. Examples focus on the Pacific Decadal Oscillation, Arctic thaw depth, the Northern Hemisphere snow cover extent, treeflow data from Lee’s Ferry, North Atlantic tropical storm frequency, and central England air temperatures.
dc.publisherJohn Wiley & Sons, Ltd.
dc.subject.otherArctic thaw depth
dc.subject.othercentral England air temperatures
dc.subject.otherHurst rescaling
dc.subject.otherintegral trace
dc.subject.othernormalized rescaled running sum
dc.subject.otherNorth Atlantic tropical cyclone frequency
dc.subject.otherNorthern Hemisphere snow cover extent
dc.subject.otherPacific Decadal Oscillation
dc.subject.otherTreeflow
dc.titleDetection of climate transitions and discontinuities by Hurst rescaling
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173063/1/joc7502_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/173063/2/joc7502.pdf
dc.identifier.doi10.1002/joc.7502
dc.identifier.sourceInternational Journal of Climatology
dc.identifier.citedreferencePartagas, J.F. and Diaz, H.F. ( 1996 ) Atlantic hurricanes in the second half of the nineteenth century. Bulletin of the American Meteorological Society, 77 ( 12 ), 2877 – 2906. https://doi.org/10.1175/1520-0477(1996)077<2899:AHITSH>2.0.CO;2.
dc.identifier.citedreferenceSeidel, D.J. and Lanzante, J.R. ( 2004 ) An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. Journal of Geophysical Research – Atmospheres, 109, D14108. https://doi.org/10.1029/2003JD004414.
dc.identifier.citedreferenceSen, P.K. ( 1965 ) Some non-parametric tests for m -dependent time series. Journal of the American Statistical Association, 60 ( 309 ), 134 – 147. https://doi.org/10.2307/2283141.
dc.identifier.citedreferenceShao, X. and Zhang, X. ( 2010 ) Testing for change points in time series. Journal of the American Statistical Association, 105 ( 491 ), 1228 – 1240. https://doi.org/10.1198/jasa.2010.tm10103.
dc.identifier.citedreferenceStreletskiy, D.A., Shiklomanov, N.I., Nelson, F.E. and Klene, A.E. ( 2008 ) Thirteen years of observations at Alaskan CALM sites: long-term active layer and ground surface temperature trends. In: PERMAFROST—9th International Conference, pp. Fairbanks, Alaska USA: International Permafrost Association, 1727 – 1732.
dc.identifier.citedreferenceSutcliffe, J., Hurst, S., Awadallah, A.G., Brown, E. and Hamed, K. ( 2016 ) Harold Edwin Hurst: the Nile and Egypt, past and future. Hydrological Sciences Journal, 61 ( 9 ), 1557 – 1570. https://doi.org/10.1080/02626667.2015.1019508.
dc.identifier.citedreferenceSwanson, K.L. and Tsonis, A.A. ( 2009 ) Has the climate recently shifted? Geophysical Research Letters, 36, L06711. https://doi.org/10.1029/2008GL037022.
dc.identifier.citedreferenceTharu, B. and Dhakal, N. ( 2020 ) On the use of Bayesian quantile regression method to explore the historical trends in extreme precipitation and their connections with large-scale climate patterns over the contiguous USA. Theoretical and Applied Climatology, 139, 1277 – 1290. https://doi.org/10.1007/s00704-019-03054-w.
dc.identifier.citedreferenceTodhunter, P.E. ( 2012 ) Uncertainty of the assumptions required for estimating the regulatory flood: Red River of the north. Journal of Hydrologic Engineering, 17, 1011 – 1020. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000560.
dc.identifier.citedreferenceTodhunter, P.E. and Fietzek-DeVries, R. ( 2016 ) Natural hydroclimatic forcing of historical lake volume fluctuations at Devils Lake, North Dakota (USA). Natural Hazards, 81, 1515 – 1532. https://doi.org/10.1007/s11069-015-2143-6.
dc.identifier.citedreferencevan Atta, C.W. and Helland, K.N. ( 1977 ) A note on the Hurst phenomenon in turbulent flows. Water Resources Research, 13 ( 6 ), 1003 – 1005. https://doi.org/10.1029/WR013I006P01003.
dc.identifier.citedreferenceVenrick, E.L., McGowan, J.A., Cayan, D.R. and Hayward, T.L. ( 1987 ) Climate and chlorophyll a: long-term trends in the central North Pacific Ocean. Science, 238 ( 4823 ), 70 – 72. https://doi.org/10.1126/science.238.4823.70.
dc.identifier.citedreferenceWallis, J.R. and O’Connell, P.E. ( 1973 ) Firm reservoir yield—How reliable are historic hydrological records? Hydrology Sciences B, 18 ( 3 ), 347 – 365. https://doi.org/10.1080/02626667309494046.
dc.identifier.citedreferenceWasserstein, R.L., Schirm, A.L. and Lazar, N.A. ( 2019 ) Moving to a world beyond “ p < 0.05”. American Statistician, 73, 1 – 19. https://doi.org/10.1080/00031305.2019.1583913.
dc.identifier.citedreferenceWeatherhead, E.C., Reinsel, G.C., Tiao, G.C., Meng, X.L., Choi, D., Cheang, W.K., Keller, T., DeLuisi, J., Wuebbles, D.J., Kerr, J.B., Miller, A.J., Oltmans, S.J. and Frederick, J.E. ( 1998 ) Factors affecting the detection of trends: statistical considerations and applications to environmental data. Journal of Geophysical Research, 103, 17149 – 17161. https://doi.org/10.1029/98JD00995.
dc.identifier.citedreferenceWu, Q., Xie, X.-Q., Mei, Y. and He, W.-P. ( 2021 ) A new early warning indicator of abrupt climate change based on the changing normalized dynamic range. International Journal of Climatology, 41, 2983 – 2995. https://doi.org/10.1002/joc.7000.
dc.identifier.citedreferenceXie, H., Li, D. and Xiong, L. ( 2014 ) Exploring the ability of the Pettitt method for detecting change point by Monte Carlo simulation. Stochastic Environmental Research and Risk Assessment, 28, 1643 – 1655. https://doi.org/10.1007/s00477-013-0814-y.
dc.identifier.citedreferenceXie, X.-Q., He, W.-P., Gu, B., Mei, Y. and Zhao, S.S. ( 2019 ) Can kurtosis be an early warning signal for abrupt climate change? Climate Dynamics, 52 ( 11 ), 6863 – 6876. https://doi.org/10.1007/s00382-018-4549-9.
dc.identifier.citedreferenceXie, Y., Huang, J. and Willett, R. ( 2013 ) Change-point detection for high-dimensional time series with missing data. IEEE Journal of Selected Topics in Signal Processing, 7 ( 1 ), 12 – 27. https://doi.org/10.1109/JSTSP.2012.2234082.
dc.identifier.citedreferenceXiong, L. and Guo, S. ( 2004 ) Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrological Sciences Journal, 49 ( 1 ), 99 – 112. https://doi.org/10.1623/hysj.49.1.99.53998.
dc.identifier.citedreferenceYou, C., Lin, D.K.J. and Young, S.S. ( 2018 ) Time series smoother for effect detection. PLoS One, 13, e0195360. https://doi.org/10.1371/journal.pone.0195360.
dc.identifier.citedreferenceYu, M. and Ruggieri, E. ( 2019 ) Change point analysis of global temperature records. International Journal of Climatology, 39, 3679 – 3688. https://doi.org/10.1002/joc.6042.
dc.identifier.citedreferenceYue, S., Pilon, P. and Cavadias, G.S. ( 2002 ) Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259, 254 – 271. https://doi.org/10.1016/S0022-1694(01)00594-7.
dc.identifier.citedreferenceZhang, Y., Wallace, J.M. and Battisti, D.S. ( 1997 ) ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10 ( 5 ), 1004 – 1020. https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.
dc.identifier.citedreferenceZhou, C., van Nooijen, R., Kolechkina, A. and Hrachowitz, M. ( 2019 ) Comparative analysis of nonparametric change-point detectors commonly used in hydrology. Hydrological Sciences Journal, 64 ( 14 ), 1690 – 1710. https://doi.org/10.1080/02626667.2019.1669792.
dc.identifier.citedreferenceZhou, H. and Liu, Y. ( 2018 ) Spatio-temporal pattern of meteorological droughts and its possible linkage with climate variability. International Journal of Climatology, 38, 2082 – 2096. https://doi.org/10.1002/joc.5319.
dc.identifier.citedreferenceAlaya, M.A.B., Ternynck, C., Dabo-Niang, S., Chebana, F. and Ouarda, T.B.M.J. ( 2020 ) Change point detection of flood events using a functional data framework. Advances in Water Resources, 137, 103522. https://doi.org/10.1016/j.advwatres.2020.103522.
dc.identifier.citedreferenceAnders, N.S., Seijmonsbergen, A.C. and Bouten, W. ( 2013 ) Geomorphological change detection using object-based feature extraction from multi-temporal LiDAR data. IEEE Geoscience and Remote Sensing Letters, 10 ( 6 ), 1587 – 1591. https://doi.org/10.1109/LGRS.2013.2262317.
dc.identifier.citedreferenceAndrade, J.M. and Estévez-Pérez, M.G. ( 2014 ) Statistical comparison of the slopes of two regression lines: a tutorial. Analytica Chimica Acta, 838, 1 – 12. https://doi.org/10.1016/j.aca.2014.04.057.
dc.identifier.citedreferenceAue, A. and Horváth, L. ( 2013 ) Structural breaks in time series. Journal of Time Series Analysis, 34, 1 – 16. https://doi.org/10.1111/j.1467-9892.2012.00819.x.
dc.identifier.citedreferenceBagniewski, W., Ghil, M. and Rousseau, D.D. ( 2021 ) Automatic detection of abrupt transitions in paleoclimate records. Chaos, 31, 113129. https://doi.org/10.1063/5.0062543.
dc.identifier.citedreferenceBarton, D.E. and David, F.N. ( 1957 ) Multiple runs. Biometrika, 44 ( 1–2 ), 168 – 178. https://doi.org/10.1093/biomet/44.1-2.168.
dc.identifier.citedreferenceBasarir, A., Arman, H., Hussein, S., Murad, A., Aldahan, A. and Al-Abri, M.A. ( 2017 ) Trend detection in climate change indicators using non-parametric statistics: a case study of Abu Dhabi, United Arab Emirates. Acta Physica Polonica A, 132, 655 – 657. https://doi.org/10.12693/APhysPolA.132.655.
dc.identifier.citedreferenceBeaulieu, C., Chen, J. and Sarmiento, J.L. ( 2012 ) Change-point analysis as a tool to detect abrupt climate variations. Philosophical Transactions of the Royal Society A, 370, 1228 – 1249. https://doi.org/10.1098/rsta.2011.0383.
dc.identifier.citedreferenceBickel, P.J. and Ren, J.-J. ( 2001 ) The bootstrap in hypothesis testing. In: de Gunst, M., Klaassen, C. and van der Vaart, A. (Eds.) State of the Art in Probability and Statistics. Beechwood, Ohio, USA: Institute of Mathematical Physics, pp. 91 – 112. https://doi.org/10.1214/lnms/1215090064.
dc.identifier.citedreferenceBoes, D.C. and Salas, J.D. ( 1978 ) Nonstationarity of the mean and the Hurst phenomenon. Water Resources Research, 14 ( 1 ), 135 – 143. https://doi.org/10.1029/WR014i001p00135.
dc.identifier.citedreferenceBond, N.A., Cronin, M.F., Freeland, H. and Mantua, N. ( 2015 ) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42 ( 9 ), 3414 – 3420. https://doi.org/10.1002/2015GL063306.
dc.identifier.citedreferenceBond, N.A., Overland, J.E., Spillane, M. and Stabeno, P.J. ( 2003 ) Recent shifts in the state of the North Pacific. Geophysical Research Letters, 30 ( 23 ), 2183. https://doi.org/10.1029/2003GL018597.
dc.identifier.citedreferenceBriggs, W.M. ( 2017 ) The substitute for p -values. Journal of the American Statistical Association, 112 ( 519 ), 897 – 898. https://doi.org/10.1080/01621459.2017.1311264.
dc.identifier.citedreferenceBriggs, W.M. ( 2019 ) Everything wrong with p- values under one roof. In: Kreinovich, V. (Ed.) Beyond Traditional Probabilistic Methods in Economics, Vol. 809. Cham, Switzerland: Springer, pp. 22 – 44.
dc.identifier.citedreferenceBriggs, W.M., Nguyen, H.T. and Trafimow, D. ( 2019 ) The replacement for hypothesis testing. In: Kreinovich, V. and Sriboonchitta, S. (Eds.) Structural Changes and the Econometric Modeling, Vol. 808. Cham, Switzerland: Springer, pp. 3 – 17.
dc.identifier.citedreferenceBudyko, M.I. ( 1948 ) Evaporation Under Natural Conditions. St. Petersburg: Gedrometeoizdat, 29 pp.
dc.identifier.citedreferenceBurn, D.H. and Elnur, M.A.H. ( 2002 ) Detection of hydrologic trends and variability. Journal of Hydrology, 255, 107 – 122. https://doi.org/10.1016/S0022-1694(01)00514-5.
dc.identifier.citedreferenceCeballos, R.F. and Largo, F.F. ( 2017 ) On the estimation of the Hurst exponent using adjusted rescaled range analysis, detrended fluctuation analysis and variance time plot: a case of exponential distribution. Imperial Journal of Interdisciplinary Research, 3 ( 8 ), 424 – 434.
dc.identifier.citedreferenceCech, T.V. ( 2009 ) Principles of Water Resources: History, Development, Management, and Policy, 4th edition. Hoboken, NJ: John Wiley & Sons, 509 pp.
dc.identifier.citedreferenceChen, S., Li, Y., Kim, J. and Kim, S.W. ( 2017 ) Bayesian change point analysis for extreme daily precipitation. International Journal of Climatology, 37, 3123 – 3137. https://doi.org/10.1002/joc.4904.
dc.identifier.citedreferenceChow, G.C. ( 1960 ) Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28 ( 3 ), 591 – 605. https://doi.org/10.2307/1910133.
dc.identifier.citedreferenceChylek, P. and Lesins, G. ( 2008 ) Multidecadal variability of Atlantic hurricane activity: 1851–2007. Journal of Geophysical Research, 113, D22106. https://doi.org/10.1029/2008JD010036.
dc.identifier.citedreferenceClarke, R.T. ( 2010 ) On the (mis)use of statistical methods in hydro-climatological research. Hydrological Sciences Journal, 55 ( 2 ), 139 – 144. https://doi.org/10.1080/02626661003616819.
dc.identifier.citedreferenceCohn, T.A. and Lins, H.F. ( 2005 ) Nature’s style: naturally trendy. Geophysical Research Letters, 32, L23402. https://doi.org/10.1029/2005GL024476.
dc.identifier.citedreferenceDavis, R., Lee, T.C.M. and Rodriguez-Yam, G.A. ( 2006 ) Structural break estimation for nonstationary time series models. Journal of the American Statistical Association, 101 ( 473 ), 223 – 239. https://doi.org/10.1198/016214505000000745.
dc.identifier.citedreferenceDias, N.L., Crivellaro, B.L. and Chamecki, M. ( 2018 ) The Hurst phenomenon in error estimates related to atmospheric turbulence. Boundary-Layer Meteorology, 168, 387 – 416. https://doi.org/10.1007/s10546-018-0353-7.
dc.identifier.citedreferenceDimitriadis, P. and Koutsoyiannis, D. ( 2015 ) Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stochastic Environmental Research and Risk Assessment, 29 ( 6 ), 1649 – 1669. https://doi.org/10.1007/s00477-015-1023-7.
dc.identifier.citedreferenceDing, H., Greatbatch, R.J., Latif, M., Park, W. and Gerdes, R. ( 2013 ) Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. Journal of Climate, 26 ( 19 ), 7650 – 7661. https://doi.org/10.1175/JCLI-D-12-00626.1.
dc.identifier.citedreferenceDixon, R.W. and Moore, T.W. ( 2011 ) Trend detection in Texas temperature and precipitation. Southwestern Geographer, 15, 80 – 103.
dc.identifier.citedreferenceDouglas, E.M., Vogel, R.M. and Kroll, C.N. ( 2000 ) Trends in floods and low flows in the United States: impact of spatial correlation. Journal of Hydrology, 240 ( 1–2 ), 90 – 105. https://doi.org/10.1016/S0022-1694(00)00336-X.
dc.identifier.citedreferenceElder, A. and Fong, Y. ( 2019 ) Estimation and inference for upper hinge regression models. Environmental and Ecological Statistics, 26, 287 – 302. https://doi.org/10.1007/s10651-019-00428-1.
dc.identifier.citedreferenceEsper, J., Frank, D.C., Wilson, R.J.S. and Briffa, K.R. ( 2005 ) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophysical Research Letters, 32, L07711. https://doi.org/10.1029/2004GL021236.
dc.identifier.citedreferenceEstilow, T.W., Young, A.H. and Robinson, D.A. ( 2015 ) A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth System Science Data, 7, 137 – 142. https://doi.org/10.5194/essd-7-137-2015.
dc.identifier.citedreferenceFagerland, M.W. ( 2012 ) T-tests, non-parametric tests, and large studies—a paradox of statistical practice? BMC Medical Research Methodology, 12, 78. https://doi.org/10.1186/1471-2288-12-78.
dc.identifier.citedreferenceFischer, H.B. ( 1973 ) A possible explanation for Nordin, McQuivey, and Majia’s observation of the Hurst phenomenon in turbulence. Water Resources Research, 9 ( 2 ), 492 – 493. https://doi.org/10.1029/WR009i002p00492.
dc.identifier.citedreferenceGallagher, C., Lund, R. and Robbins, M. ( 2013 ) Changepoint detection in climate time series with long-term trends. Journal of Climate, 26 ( 14 ), 4994 – 5006. https://doi.org/10.1175/JCLI-D-12-00704.1.
dc.identifier.citedreferenceGan, T.Y., Barry, R.G., Gizaw, M., Gobena, A. and Balaji, R. ( 2013 ) Changes in North American snowpacks for 1979–2007 detected from the snow water equivalent data of SMMR and SSM/I passive microwave and related climatic factors. Journal of Geophysical Research: Atmospheres, 118, 7682 – 7697. https://doi.org/10.1002/jgrd.50507.
dc.identifier.citedreferenceGedalof, Z. and Smith, D.J. ( 2001 ) Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophysical Research Letters, 28 ( 8 ), 1515 – 1518. https://doi.org/10.1029/2000GL011779.
dc.identifier.citedreferenceGiese, B.S., Urizar, S.C. and Fuckar, N.S. ( 2001 ) Southern Hemisphere origins of the 1976 climate shift. Geophysical Research Letters, 29 ( 2 ), 1014. https://doi.org/10.1029/2001GL013268.
dc.identifier.citedreferenceGuo, L.-P., Yu, Q., Gao, P., Nie, X.-F., Liao, K.-T., Chen, X.-L., Hu, J.-M. and Mu, X.-M. ( 2018 ) Trend and change-point analysis of streamflow and sediment discharge of the Gongshui River in China during the last 60 years. Water, 10, 1273. https://doi.org/10.3390/w10091273.
dc.identifier.citedreferenceHajani, E. and Rahman, A. ( 2018 ) Characterizing changes in rainfall: a case study for New South Wales, Australia. International Journal of Climatology, 38, 1452 – 1462. https://doi.org/10.1002/joc.5258.
dc.identifier.citedreferenceHalsey, L.G. ( 2019 ) The reign of the p -value is over: What alternative analyses could we employ to fill the power vacuum? Biology Letters, 15, 20190174. https://doi.org/10.1098/rsbl.2019.0174.
dc.identifier.citedreferenceHamed, K.H. ( 2007 ) Improved finite-sample Hurst exponent estimates using rescaled range analysis. Water Resources Research, 43 ( 4 ), W04413. https://doi.org/10.1029/2006WR005111.
dc.identifier.citedreferenceHartmann, B. and Wendler, G. ( 2005 ) The significance of the 1976 Pacific climate shift in the climatology of Alaska. Journal of Climate, 18 ( 22 ), 4824 – 4839. https://doi.org/10.1175/JCLI3532.1.
dc.identifier.citedreferenceHartmann, D.L. ( 2015 ) Pacific Sea surface temperature and the winter of 2014. Geophysical Research Letters, 42 ( 6 ), 1894 – 1902. https://doi.org/10.1002/2015GL063083.
dc.identifier.citedreferenceHidalgo, H.G. and Dracup, J.A. ( 2003 ) ENSO and PDO effects on hydroclimatic variations of the upper Colorado River. Journal of Hydrometeorology, 4 ( 1 ), 5 – 23. https://doi.org/10.1175/1525-7541(2003)004<0005:EAPEOH>2.0.CO;2.
dc.identifier.citedreferenceHilas, C.S., Rekanos, I.T. and Mastorocostas, P.A. ( 2013 ) Change point detection in time series using higher-order statistics: a heuristic approach. Mathematical Problems in Engineering, 2013, 317613. https://doi.org/10.1155/2013/317613.
dc.identifier.citedreferenceHinkel, K.M. and Outcalt, S.I. ( 1995 ) Detection of heat-mass transfer regime transitions in the active layer using fractal geometric parameters. Cold Regions Science and Technology, 23, 293 – 304. https://doi.org/10.1016/0165-232X(95)00003-T.
dc.identifier.citedreferenceHjellvik, V. and Tjøstheim, D. ( 1995 ) Nonparametric tests of linearity for time series. Biometrika, 82 ( 2 ), 351 – 368. https://doi.org/10.1093/biomet/82.2.351.
dc.identifier.citedreferenceHowarth, D.A. and Rogers, J.C. ( 1992 ) Problems associated with smoothing and filtering of geophysical time-series data. Physical Geography, 13 ( 1 ), 81 – 99. https://doi.org/10.1080/02723646.1992.10642446.
dc.identifier.citedreferenceHurrell, J.W. and van Loon, H. ( 1994 ) A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus A, 46 ( 3 ), 325 – 338. https://doi.org/10.1034/j.1600-0870.1994.t01-1-00007.x.
dc.identifier.citedreferenceHurst, H.E. ( 1951 ) Long-term storage capacity of reservoirs. American Society of Civil Engineers, 116, 770 – 799.
dc.identifier.citedreferenceHurst, H.E. ( 1956 ) The problem of long-term storage in reservoirs. Hydrological Sciences Journal, 1 ( 3 ), 13 – 27. https://doi.org/10.1080/02626665609493644.
dc.identifier.citedreferenceIstanbulluoglu, E., Wang, T., Wright, O.M. and Lenters, J.D. ( 2012 ) Interpretation of hydrologic trends from a water balance perspective: the role of groundwater storage in the Budyko hypothesis. Water Resources Research, 48, W00H16. https://doi.org/10.1029/2010WR010100.
dc.identifier.citedreferenceJohnstone, J.A. and Mantua, N.J. ( 2014 ) Atmospheric controls on Northeast Pacific temperature variability and change, 1900–2012. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 40 ), 14360 – 14365. https://doi.org/10.1073/pnas.1318371111.
dc.identifier.citedreferenceJouini, J. and Boutahar, M. ( 2005 ) Evidence on structural changes in U.S. time series. Economic Modelling, 22, 391 – 422. https://doi.org/10.1016/j.econmod.2004.06.003.
dc.identifier.citedreferenceKarl, T.R., Knight, R.W. and Baker, B. ( 2000 ) The record breaking global temperatures of 1997 and 1998: evidence for an increase in the rate of global warming? Geophysical Research Letters, 27, 719 – 722. https://doi.org/10.1029/1999GL010877.
dc.identifier.citedreferenceKenkel, N.C. ( 1995 ) Environmental persistence and the structure/composition of northern prairie marshes. UFS (Delta Marsh) Annual Report, 30, 93 – 98.
dc.identifier.citedreferenceKhaliq, M.N. and Gachon, P. ( 2010 ) Pacific Decadal Oscillation climate variability and temporal pattern of winter flows in northwestern North America. Journal of Hydrometeorology, 11 ( 4 ), 917 – 933. https://doi.org/10.1175/2010JHM1254.1.
dc.identifier.citedreferenceKhapalova, E.A., Jandhyala, V.K., Fotopoulos, S.B. and Overland, J.E. ( 2018 ) Assessing change-points in surface air temperature over Alaska. Frontiers in Environmental Science, 6, 121. https://doi.org/10.3389/fenvs.2018.00121.
dc.identifier.citedreferenceKlemeš, V. ( 1974 ) The Hurst phenomenon: a puzzle? Water Resources Research, 10 ( 4 ), 675 – 688. https://doi.org/10.1029/WR010i004p00675.
dc.identifier.citedreferenceKlemeš, V. ( 1986 ) Dilettantism in hydrology: transition or destiny. Water Resources Research, 22 ( 9 ), 177S – 188S. https://doi.org/10.1029/WR022i09Sp0177S.
dc.identifier.citedreferenceKoutsoyiannis, D. ( 2002 ) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrological Sciences Journal, 47 ( 4 ), 573 – 595. https://doi.org/10.1080/02626660209492961.
dc.identifier.citedreferenceKoutsoyiannis, D. ( 2005a ) Uncertainty, entropy, scaling and hydrological stochastics, 1, marginal distributional properties of hydrological processes and state scaling. Hydrological Sciences Journal, 50 ( 3 ), 381 – 404. https://doi.org/10.1623/hysj.50.3.381.65031.
dc.identifier.citedreferenceKoutsoyiannis, D. ( 2005b ) Uncertainty, entropy, scaling and hydrological stochastics, 2, time dependence of hydrological processes and time scaling. Hydrological Sciences Journal, 50 ( 3 ), 405 – 426. https://doi.org/10.1623/hysj.50.3.405.65028.
dc.identifier.citedreferenceKoutsoyiannis, D. ( 2013 ) Hydrology and change. Hydrological Sciences Journal, 58 ( 6 ), 1177 – 1197. https://doi.org/10.1080/02626667.2013.804626.
dc.identifier.citedreferenceKoutsoyiannis, D. and Cohn, T.A. ( 2008 ) The Hurst phenomenon and climate. European Geosciences Union General Assembly, 10, 11804. https://doi.org/10.13140/RG.2.2.13303.01447.
dc.identifier.citedreferenceKoutsoyiannis, D., Dimitriadis, P., Lombardo, F. and Stevens, S. ( 2018 ) From fractals to stochastics: seeking theoretical consistency in analysis of geophysical data. In: Tsonis, A.A. (Ed.) Advances in Nonlinear Geosciences. Cham, Switzerland: Springer, pp. 237 – 278.
dc.identifier.citedreferenceKoutsoyiannis, D., Efstratiadis, A., Mamassis, N. and Christofides, A. ( 2008 ) On the credibility of climate predictions. Hydrological Sciences Journal, 53 ( 4 ), 671 – 684. https://doi.org/10.1623/hysj.53.4.671.
dc.identifier.citedreferenceKoutsoyiannis, D. and Montanari, A. ( 2015 ) Negligent killing of scientific concepts: the stationarity case. Hydrological Sciences Journal, 60 ( 7–8 ), 1174 – 1183. https://doi.org/10.1080/02626667.2014.959959.
dc.identifier.citedreferenceKubota, H. and Chan, J.C.L. ( 2009 ) Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005. Geophysical Research Letters, 36, L12802. https://doi.org/10.1029/2009GL038108.
dc.identifier.citedreferenceLandsea, C.W., Anderson, C., Charles, N., Clark, G., Dunion, J.P., Fernandez-Partagas, J., Hungerford, P., Neumann, C.J. and Zimmer, M. ( 2004 ) The Atlantic hurricane database re-analysis project: documentation for 1851–1910 alterations and additions to the HURDAT database. In: Nurnane, R.J. and Liu, K.B. (Eds.) Hurricanes and Typhoons: Past, Present, and Future. New York, USA: Columbia University Press, pp. 178 – 219.
dc.identifier.citedreferenceLandsea, C.W. and Franklin, J.L. ( 2013 ) Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review, 141 ( 10 ), 3576 – 3592. https://doi.org/10.1175/MWR-D-12-00254.1.
dc.identifier.citedreferenceLanzante, J.R. ( 1996 ) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. International Journal of Climatology, 16, 1197 – 1226. https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L.
dc.identifier.citedreferenceLitzow, M.A., Hunsicker, M.E., Bond, N.A., Burke, B.J., Cunningham, C.J., Gosselin, J.L., Norton, E.L., Ward, E.J. and Zador, S.G. ( 2020 ) The changing physical and ecological meanings of North Pacific Ocean climate indices. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 14 ), 7665 – 7671. https://doi.org/10.1073/pnas.1921266117.
dc.identifier.citedreferenceLoeb, N.G., Thorsen, T.J., Norris, J.R., Wang, H. and Su, W. ( 2018 ) Changes in Earth’s energy budget during and after the “pause” in global warming: an observational perspective. Climate, 6, 62. https://doi.org/10.3390/cli6030062.
dc.identifier.citedreferenceLund, R., Wang, X.L., Lu, Q.Q., Reeves, J., Gallagher, C. and Feng, Y. ( 2007 ) Changepoint detection in periodic and autocorrelated time series. Journal of Climate, 20 ( 20 ), 5178 – 5190. https://doi.org/10.1175/JCLI4291.1.
dc.identifier.citedreferenceLupo, A.R., Latham, T.K., Magill, T.H., Clark, J.V., Melick, C.J. and Market, P.S. ( 2008 ) The interannual variability of hurricane activity in the Atlantic and East Pacific regions. National Weather Digest, 32 ( 1 ), 11 – 33.
dc.identifier.citedreferenceLyubchich, V., Gel, Y.R. and El-Shaarawi, A.H. ( 2013 ) On detecting non-monotonic trends in environmental time series: a fusion of local regression and bootstrap. Environmetrics, 24, 209 – 226. https://doi.org/10.1002/env.2212.
dc.identifier.citedreferenceMandelbrot, B.B. ( 1982 ) The Fractal Geometry of Nature. New York, NY: W.H. Freeman, 468 pp.
dc.identifier.citedreferenceManley, G. ( 1974 ) Central England temperatures: monthly means 1659 to 1973. Quarterly Journal of the Royal Meteorological Society, 100 ( 425 ), 389 – 405. https://doi.org/10.1002/qj.49710042511.
dc.identifier.citedreferenceMantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M. and Francis, R.C. ( 1997 ) A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78 ( 6 ), 1069 – 1079. https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
dc.identifier.citedreferenceMauget, S.A. ( 2015 ) Optimal ranking regime analysis of treeflow dendrohydrological reconstructions. Climate of the Past, 11, 1107 – 1125. https://doi.org/10.5194/cp-11-1107-2015.
dc.identifier.citedreferenceMcCabe, G.J., Jr., Palecki, M.A. and Betancourt, J.L. ( 2004 ) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 12 ), 4136 – 4141. https://doi.org/10.1073/pnas.0306738101.
dc.identifier.citedreferenceMcKitrick, R.R. and Vogelsang, T.J. ( 2014 ) HAC robust trend comparisons among climate series with possible level shifts. Environmetrics, 25, 528 – 547. https://doi.org/10.1002/env.2294.
dc.identifier.citedreferenceMcShane, B.B. and Gal, D. ( 2017 ) Statistical significance and the dichotomization of evidence. Journal of the American Statistical Association, 112 ( 519 ), 885 – 908. https://doi.org/10.1080/01621459.2017.1289846.
dc.identifier.citedreferenceMeehl, G.A., Hu, A. and Santer, B.D. ( 2009 ) The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. Journal of Climatology, 22 ( 3 ), 780 – 792. https://doi.org/10.1175/2008JCLI2552.1.
dc.identifier.citedreferenceMeko, D.M., Woodhouse, C.A., Baisan, C.A., Knight, T., Lukas, J.J., Hughes, M.K. and Salzer, M.W. ( 2007 ) Medieval drought in the upper Colorado River basin. Geophysical Research Letters, 34, L10705. https://doi.org/10.1029/2007GL029988.
dc.identifier.citedreferenceMesa, O.J. and Poveda, G. ( 1993 ) The Hurst effect: the scale of fluctuation approach. Water Resources Research, 29 ( 12 ), 3995 – 4002. https://doi.org/10.1029/93WR01686.
dc.identifier.citedreferenceMiller, A.J., Cayan, D.R., Barnett, T.P., Graham, N.E. and Oberhuber, J.M. ( 1994 ) The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7 ( 1 ), 21 – 26. https://doi.org/10.5670/oceanog.1994.11.
dc.identifier.citedreferenceMoberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M. and Karlen, W. ( 2005 ) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433, 613 – 617. https://doi.org/10.1038/nature03265.
dc.identifier.citedreferenceMudelsee, M. ( 2019 ) Trend analysis of climate time series: a review of methods. Earth Science Reviews, 190, 310 – 322. https://doi.org/10.1016/j.earscirev.2018.12.005.
dc.identifier.citedreferenceMuthuramu, P. and Maheswari, T.U. ( 2019 ) Tests for structural breaks in time series analysis: a review of recent development. Shanlax International Journal of Economics, 7, 66 – 79. https://doi.org/10.34293/economics.v7i4.628.
dc.identifier.citedreferenceNakagawa, S. and Cuthill, I.C. ( 2007 ) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Research, 83, 591 – 605. https://doi.org/10.1111/j.1469-185X.2007.00027.x.
dc.identifier.citedreferenceNelson, F.E., Outcalt, S.I., Brown, J., Shikomanov, N.I. and Hinkel, K.M. ( 1998 ) Spatial and temporal attributes of the active-layer thickness record, Barrow, Alaska, USA. In: PERMAFROST—7th International Conference, Vol. 55, pp. Yellowknife, Northwest Territories, Canada: International Permafrost Association, 797 – 802.
dc.identifier.citedreferenceNiu, K., Hu, Q., Wang, Y., Yang, H., Liang, C., Wang, L., Li, L., Li, X., du, Y. and Li, C. ( 2021 ) Analysis on the variation of hydro-meteorological variables in the Yongding River mountain area driven by multiple factors. Remote Sensing, 13, 3199. https://doi.org/10.3390/rs13163199.
dc.identifier.citedreferenceNoguchi, K., Gel, Y.R. and Duguay, C.R. ( 2011 ) Bootstrap-based tests for trends in hydrological time series, with application to ice phenology data. Journal of Hydrology, 410, 150 – 161. https://doi.org/10.1016/j.jhydrol.2011.09.008.
dc.identifier.citedreferenceNordin, C.F., McQuivey, R.S. and Mejia, J.M. ( 1972 ) Hurst phenomenon in turbulence. Water Resources Research, 8 ( 6 ), 1480 – 1486. https://doi.org/10.1029/WR008i006p01480.
dc.identifier.citedreferenceO’Connell, P.E., Koutsoyiannis, D., Lins, H.F., Markonis, Y., Montanari, A. and Cohn, T.A. ( 2016 ) The scientific legacy of Harold Edwin Hurst (1880–1978). Hydrological Sciences Journal, 61 ( 9 ), 1571 – 1590. https://doi.org/10.1080/02626667.2015.1125998.
dc.identifier.citedreferenceOsterkamp, T.E., Zhang, T. and Romanovsky, V.E. ( 1994 ) Evidence for a cyclic variation of permafrost temperatures in northern Alaska. Permafrost and Periglacial Processes, 5, 137 – 144. https://doi.org/10.1002/ppp.3430050303.
dc.identifier.citedreferenceOutcalt, S.I. ( 1972 ) A reconnaissance experiment in mapping and modeling the effect of land use on urban thermal regimes. Journal of Applied Meteorology, 11 ( 12 ), 1369 – 1373. https://doi.org/10.1175/1520-0450(1972)011<1369:AREIMA>2.0.CO;2.
dc.identifier.citedreferenceOutcalt, S.I., Hinkel, K.M., Meyer, E. and Brazel, A.J. ( 1997 ) Application of Hurst rescaling to geophysical serial data. Geographical Analysis, 29 ( 1 ), 72 – 87. https://doi.org/10.1111/j.1538-4632.1997.tb00947.x.
dc.identifier.citedreferenceOutcalt, S.I. and Melton, M.A. ( 1992 ) Geomorphic application of the Hausdorff-Besicovich dimension. Earth Surface Processes and Landforms, 17, 775 – 787. https://doi.org/10.1002/esp.3290170805.
dc.identifier.citedreferenceTan, X. and Gan, T.Y. ( 2017 ) Multifractality of Canadian precipitation and streamflow. International Journal of Climatology, 37 ( S1 ), 1221 – 1236. https://doi.org/10.1002/joc/5078.
dc.identifier.citedreferenceOverpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A. and Zielinski, G. ( 1997 ) Arctic environmental change of the last four centuries. Science, 278, 1251 – 1256. https://doi.org/10.1126/science.278.5341.1251.
dc.identifier.citedreferenceParker, D.E. and Horton, B. ( 2005 ) Uncertainties in central England temperature 1878–2003 and some improvements to the maximum and minimum series. International Journal of Climatology, 25, 1173 – 1188. https://doi.org/10.1002/joc.1190.
dc.identifier.citedreferenceParker, D.E., Legg, T.P. and Folland, C.K. ( 1992 ) A new daily central England temperature series, 1772–1991. International Journal of Climatology, 12 ( 4 ), 317 – 342. https://doi.org/10.1002/joc.3370120402.
dc.identifier.citedreferencePease, R.W., Lewis, J.E. and Outcalt, S.I. ( 1976 ) Urban terrain climatology and remote sensing. Annals of the Association of American Geographers, 66 ( 4 ), 557 – 569. https://doi.org/10.1111/j.1467-8306.1976.tb01110.x.
dc.identifier.citedreferencePolovina, J., Mitchum, G.T., Graham, N.E., Craig, M.P., DeMartini, E.E. and Flint, E.N. ( 1994 ) Physical and biological consequences of a climatic event in the central North Pacific. Fisheries Oceanogr., 3, 15 – 21. https://doi.org/10.1111/j.1365-2419.1994.tb00044.x.
dc.identifier.citedreferencePotter, K.W. ( 1976 ) Evidence for nonstationarity as a physical explanation of the Hurst phenomenon. Water Resources Research, 12 ( 5 ), 1047 – 1052. https://doi.org/10.1029/WR012i005p01047.
dc.identifier.citedreferencePotter, K.W. ( 1979 ) Annual precipitation in the Northeast United States: long memory, short memory, or no memory? Water Resources Research, 15 ( 2 ), 340 – 346. https://doi.org/10.1029/WR015i002p00340.
dc.identifier.citedreferenceReeves, J., Chen, J., Wang, X.L., Lund, R. and Lu, Q.Q. ( 2007 ) A review and comparison of changepoint detection techniques for climate data. Journal of Applied Meteorology and Climatology, 46 ( 6 ), 900 – 915. https://doi.org/10.1175/JAM2493.1.
dc.identifier.citedreferenceRice, J.L., Woodhouse, C.A. and Lukas, J.J. ( 2009 ) Science and decision making: water management and tree-ring data in the western United States. Journal of the American Water Resources Association, 45 ( 5 ), 1248 – 1259. https://doi.org/10.1111/j.1752-1688.2009.00358.x.
dc.identifier.citedreferenceRienzner, M. and Gandolfi, C. ( 2011 ) A composite statistical method for the detection of multiple undocumented abrupt changes in the mean value within a time series. International Journal of Climatology, 31, 742 – 755. https://doi.org/10.1002/joc.2113.
dc.identifier.citedreferenceRobinson, D.A., Dewey, K.F. and Heim, R.R., Jr. ( 1993 ) Global snow cover monitoring: an update. Bulletin of the American Meteorological Society, 74 ( 9 ), 1689 – 1696. https://doi.org/10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.
dc.identifier.citedreferenceRobinson, D.A., Estilow, T.W. and NOAA CDR Program. ( 2012 ) NOAA climate data record (CDR) of Northern Hemisphere (NH) snow cover extent (SCE), version 1. Asheville, North Carolina, USA: NOAA National Centers for Environmental Information.
dc.identifier.citedreferenceRuddell, D., Hoffman, D., Ahmad, O. and Brazel, A.J. ( 2013 ) Historical threshold temperatures for Phoenix (urban) and Gila Bend (desert), central Arizona, USA. Climate Research, 55, 201 – 215. https://doi.org/10.3354/cr01130.
dc.identifier.citedreferenceRuggieri, E. ( 2013 ) A Bayesian approach to detecting change points in climatic records. International Journal of Climatology, 33, 520 – 528. https://doi.org/10.1002/joc.3447.
dc.identifier.citedreferenceRunnalls, K.E. and Oke, T.R. ( 2006 ) A technique to detect microclimatic inhomogenieties in historical records of screen-level air temperature. Journal of Climate, 19 ( 6 ), 959 – 978. https://doi.org/10.1175/JCLI3663.1.
dc.identifier.citedreferenceSantana, R. and Coelho, R. ( 2012 ) Low-frequency ambient noise generator with application to automatic speaker classification. EURASIP Journal of Advances in Signal Processing, 2012, 175.
dc.identifier.citedreferenceSchroeder, M. ( 1991 ) Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York, NY: W.H. Freeman, 429 pp.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.