Metal-Free Organic Triplet Emitters with On–Off Switchable Excited State Intramolecular Proton Transfer
dc.contributor.author | Shao, Wenhao | |
dc.contributor.author | Hao, Jie | |
dc.contributor.author | Jiang, Hanjie | |
dc.contributor.author | Zimmerman, Paul M. | |
dc.contributor.author | Kim, Jinsang | |
dc.date.accessioned | 2022-08-02T18:56:36Z | |
dc.date.available | 2023-08-02 14:56:34 | en |
dc.date.available | 2022-08-02T18:56:36Z | |
dc.date.issued | 2022-07 | |
dc.identifier.citation | Shao, Wenhao; Hao, Jie; Jiang, Hanjie; Zimmerman, Paul M.; Kim, Jinsang (2022). "Metal-Free Organic Triplet Emitters with On–Off Switchable Excited State Intramolecular Proton Transfer." Advanced Functional Materials 32(29): n/a-n/a. | |
dc.identifier.issn | 1616-301X | |
dc.identifier.issn | 1616-3028 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/173091 | |
dc.description.abstract | Metal-free organic triplet emitters are an emerging class of organic semiconducting material. Among them, molecules with tunable emission responsive to environmental stimuli have shown great potential in solid-state lighting, sensors, and anti-counterfeiting systems. Here, a novel excited-state intramolecular proton transfer (ESIPT) system is proposed showing the activation of thermally activated delayed fluorescence (TADF) or room-temperature phosphorescence (RTP) simultaneously from both keto and enol tautomers. The prototype ESIPT triplet emitters exhibit up to 50% delayed emission quantum yield. Their enol–keto tautomerization can be switched by controlling the matrix acidity in doped polymer films. Taking advantage of these unique properties, “on-off” switchable triplet emission systems controlled by acid vapor annealing, as well as photopatterning systems capable of generating facile and high-contrast emissive patterns, are devised.A novel excited-state intramolecular proton transfer (ESIPT) system is presented exhibiting thermally activated delayed fluorescence or room-temperature phosphorescence simultaneously from keto or enol tautomers, respectively. These ESIPT triplet emitters show up to 50% delayed emission quantum yield and acidity-responsive switchable tautomerization. Unique “on-off” switchable triplet emission controlled by acid vapor annealing as well as high-contrast photopatterning systems is demonstrated. | |
dc.publisher | University Science Books | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | excited-state intramolecular proton transfer | |
dc.subject.other | thermally activated delayed fluorescence | |
dc.subject.other | switchable triplet emission systems | |
dc.subject.other | room-temperature phosphorescence | |
dc.subject.other | metal-free organic triplet emitters | |
dc.title | Metal-Free Organic Triplet Emitters with On–Off Switchable Excited State Intramolecular Proton Transfer | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Engineering (General) | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173091/1/adfm202201256-sup-0001-SuppMat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173091/2/adfm202201256_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/173091/3/adfm202201256.pdf | |
dc.identifier.doi | 10.1002/adfm.202201256 | |
dc.identifier.source | Advanced Functional Materials | |
dc.identifier.citedreference | H. Ma, Q. Peng, Z. An, W. Huang, Z. Shuai, J. Am. Chem. Soc. 2019, 141, 1010. | |
dc.identifier.citedreference | N. A. Kukhta, M. R. Bryce, Mater. Horiz. 2021, 8, 33. | |
dc.identifier.citedreference | V. S. Padalkar, S. Seki, Chem. Soc. Rev. 2016, 45, 169. | |
dc.identifier.citedreference | D. McMorrow, M. Kasha, J. Am. Chem. Soc. 1983, 105, 5133. | |
dc.identifier.citedreference | M. Kasha, J. Chem. Soc., Faraday Trans. 2 1986, 82, 2379. | |
dc.identifier.citedreference | M. H. van Benthem, G. D. Gillispie, J. Phys. Chem. 1984, 88, 2954. | |
dc.identifier.citedreference | J. Massue, D. Jacquemin, G. Ulrich, Chem. Lett. 2018, 47, 1083. | |
dc.identifier.citedreference | S. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 10988. | |
dc.identifier.citedreference | M. Hagiri, N. Ichinose, J. I. Kinugasa, T. Iwasa, T. Nakayama, Chem. Lett. 2004, 33, 326. | |
dc.identifier.citedreference | H. Saigusa, T. Azumi, J. Chem. Phys. 2008, 71, 1408. | |
dc.identifier.citedreference | M. A. El-Sayed, J. Chem. Phys. 1963, 38, 2834. | |
dc.identifier.citedreference | N. J. Turro, V. Ramamurthy, J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, First Indi., Vol. 88, University Science Books, Sausalito, CA 2012. | |
dc.identifier.citedreference | W. Shao, H. Jiang, R. Ansari, P. Zimmerman, J. Kim, Chem. Sci. 2022, 13, 789. | |
dc.identifier.citedreference | A. D. Chien, P. M. Zimmerman, J. Chem. Phys. 2017, 146, 014103. | |
dc.identifier.citedreference | F. Bell, P. M. Zimmerman, D. Casanova, M. Goldey, M. Head-Gordon, Phys. Chem. Chem. Phys. 2013, 15, 358. | |
dc.identifier.citedreference | P. M. Zimmerman, F. Bell, M. Goldey, A. T. Bell, M. Head-Gordon, J. Chem. Phys. 2012, 137, 164110. | |
dc.identifier.citedreference | H. Jiang, P. M. Zimmerman, J. Chem. Phys. 2020, 153, 064109. | |
dc.identifier.citedreference | D. Casanova, M. Head-Gordon, Phys. Chem. Chem. Phys. 2009, 11, 9779. | |
dc.identifier.citedreference | A. I. Krylov, Chem. Phys. Lett. 2001, 338, 375. | |
dc.identifier.citedreference | A. I. Krylov, Chem. Phys. Lett. 2001, 350, 522. | |
dc.identifier.citedreference | E. Heyer, K. Benelhadj, S. Budzák, D. Jacquemin, J. Massue, G. Ulrich, Chem. - Eur. J. 2017, 23, 7324. | |
dc.identifier.citedreference | S. Sarkar, H. P. Hendrickson, D. Lee, F. Devine, J. Jung, E. Geva, J. Kim, B. D. Dunietz, J. Phys. Chem. C 2017, 121, 3771. | |
dc.identifier.citedreference | J. Gibson, A. P. Monkman, T. J. Penfold, ChemPhysChem 2016, 2956. | |
dc.identifier.citedreference | E. W. Evans, Y. Olivier, Y. Puttisong, W. K. Myers, T. J. H. Hele, S. M. Menke, T. H. Thomas, D. Credgington, D. Beljonne, R. H. Friend, N. C. Greenham, J. Phys. Chem. Lett. 2018, 9, 4053. | |
dc.identifier.citedreference | J. Gibson, T. J. Penfold, Phys. Chem. Chem. Phys. 2017, 19, 8428. | |
dc.identifier.citedreference | I. Kim, S. O. Jeon, D. Jeong, H. Choi, W. J. Son, D. Kim, Y. M. Rhee, H. S. Lee, J. Chem. Theory Comput. 2020, 16, 621. | |
dc.identifier.citedreference | M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680. | |
dc.identifier.citedreference | T. Hosokai, H. Noda, H. Nakanotani, T. Nawata, Y. Nakayama, H. Matsuzaki, C. Adachi, J. Photonics Energy 2018, 8, 032102. | |
dc.identifier.citedreference | M. Kasha, Discuss. Faraday Soc. 1950, 9, 14. | |
dc.identifier.citedreference | Y. Zhu, Y. Guan, Y. Niu, P. Wang, R. Chen, Y. Wang, P. Wang, H.-L. Xie, Adv. Opt. Mater. 2021, 9, 2100782. | |
dc.identifier.citedreference | M. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6. | |
dc.identifier.citedreference | M. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem. 2014, 126, 11359. | |
dc.identifier.citedreference | T. Ma, T. Li, L. Zhou, X. Ma, J. Yin, X. Jiang, Nat. Commun. 2020, 11, 1811. | |
dc.identifier.citedreference | S. Zhao, H. Ma, M. Wang, C. Cao, J. Xiong, Y. Xu, S. Yao, Photochem. Photobiol. Sci. 2010, 9, 710. | |
dc.identifier.citedreference | O. Bolton, K. Lee, H.-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205. | |
dc.identifier.citedreference | Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685. | |
dc.identifier.citedreference | D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am. Chem. Soc. 2013, 135, 6325. | |
dc.identifier.citedreference | H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234. | |
dc.identifier.citedreference | K. Benelhadj, W. Muzuzu, J. Massue, P. Retailleau, A. Charaf-Eddin, A. D. Laurent, D. Jacquemin, G. Ulrich, R. Ziessel, Chem. - Eur. J. 2014, 20, 12843. | |
dc.identifier.citedreference | K.-C. Tang, M.-J. Chang, T.-Y. Lin, H.-A. Pan, T.-C. Fang, K.-Y. Chen, W.-Y. Hung, Y.-H. Hsu, P.-T. Chou, J. Am. Chem. Soc. 2011, 133, 17738. | |
dc.identifier.citedreference | S. Haldar, D. Chakraborty, B. Roy, G. Banappanavar, K. Rinku, D. Mullangi, P. Hazra, D. Kabra, R. Vaidhyanathan, J. Am. Chem. Soc. 2018, 140, 13367. | |
dc.identifier.citedreference | K. Wu, T. Zhang, Z. Wang, L. Wang, L. Zhan, S. Gong, C. Zhong, Z.-H. Lu, S. Zhang, C. Yang, J. Am. Chem. Soc. 2018, 140, 8877. | |
dc.identifier.citedreference | M. Mamada, K. Inada, T. Komino, W. J. Poscavage Jr., H. Nakanotani, C. Adachi, ACS Cent. Sci. 2017, 3, 769. | |
dc.identifier.citedreference | A. K. Gupta, W. Li, A. Ruseckas, C. Lian, C. L. Carpenter-Warren, D. B. Cordes, A. M. Z. Slawin, D. Jacquemin, I. D. W. Samuel, E. Zysman-Colman, ACS Appl. Mater. Interfaces 2021, 13, 15459. | |
dc.identifier.citedreference | Y. Long, M. Mamada, C. Li, P. L. dos Santos, M. Colella, A. Danos, C. Adachi, A. Monkman, J. Phys. Chem. Lett. 2020, 11, 3305. | |
dc.identifier.citedreference | A. S. Berezin, K. A. Vinogradova, V. P. Krivopalov, E. B. Nikolaenkova, V. F. Plyusnin, A. S. Kupryakov, N. v. Pervukhina, D. Y. Naumov, M. B. Bushuev, Chem. – Eur. J. 2018, 24, 12790. | |
dc.identifier.citedreference | Y. Cao, J. Eng, T. J. Penfold, J. Phys. Chem. A 2019, 123, 2640. | |
dc.identifier.citedreference | R. M. Khisamov, A. A. Ryadun, T. S. Sukhikh, S. N. Konchenko, Mol. Syst. Des. Eng. 2021, 6, 1056. | |
dc.identifier.citedreference | F. Liang, L. Wang, D. Ma, X. Jing, F. Wang, Appl. Phys. Lett. 2002, 81, 4. | |
dc.identifier.citedreference | D. Sahoo, T. Adhikary, P. Chowdhury, S. C. Roy, S. Chakravorti, Chem. Phys. 2008, 352, 175. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.