Show simple item record

Schelkunoff Formulation of the Sommerfeld Integral for the Hertzian Dipole Located in the Vicinity of Cylindrical Structures

dc.contributor.authorShaikh, Tazeen
dc.contributor.authorGhosh, Bratin
dc.contributor.authorBhattacharya, Dhrubajyoti
dc.contributor.authorSarabandi, Kamal
dc.date.accessioned2022-09-26T16:01:37Z
dc.date.available2023-09-26 12:01:35en
dc.date.available2022-09-26T16:01:37Z
dc.date.issued2022-08
dc.identifier.citationShaikh, Tazeen; Ghosh, Bratin; Bhattacharya, Dhrubajyoti; Sarabandi, Kamal (2022). "Schelkunoff Formulation of the Sommerfeld Integral for the Hertzian Dipole Located in the Vicinity of Cylindrical Structures." Radio Science 57(8): n/a-n/a.
dc.identifier.issn0048-6604
dc.identifier.issn1944-799X
dc.identifier.urihttps://hdl.handle.net/2027.42/174768
dc.description.abstractA numerical integration of the Sommerfeld integral is performed using the Schelkunoff formulation for cylindrical media. The Schelkunoff kernel for cylindrical media involves higher order modified Bessel functions with azimuthal summation over higher order modes. As such, the convergence characteristics of the cylindrical integral kernel are strongly dependent on complex linear combinations of higher order Bessel/Hankel/modified Bessel functions, compared to the case of the planar media where only a single Bessel/modified Bessel function of zeroth order is present. Two cylindrical configurations are analyzed using the new formulation, viz. a conducting cylinder and a dielectric‐coated conducting cylinder. The branch‐point singularity in the first configuration is removed using the angular transformation for the Sommerfeld/Schelkunoff formulations. A path deformation technique is used for the second configuration to address the problem of poles and branch‐point singularities on the real axis of integration. The in‐depth analysis of the cylindrical kernels and the integrals with variation in the location of the observation point clearly bring out the relative merits of both formulations for the cylindrical configurations, with the TE/TM coupling for the coated cylinder considered.Key PointsThe Schelkunoff kernel for cylindrical media involves higher order modified Bessel functions with higher order azimuthal modal summationThe Sommerfeld integral converges faster than Schelkunoff integral for large radial separation between source and field pointsThe Schelkunoff integral converges faster compared to Sommerfeld integral for large axial separation between source and field points
dc.publisherUSNC‐URSI Radio Science Meeting
dc.publisherWiley Periodicals, Inc.
dc.subject.otherintegral tail
dc.subject.otherconducting cylinder
dc.subject.othercoated cylinder
dc.subject.otherSchelkunoff integral
dc.subject.otherSommerfeld integral
dc.titleSchelkunoff Formulation of the Sommerfeld Integral for the Hertzian Dipole Located in the Vicinity of Cylindrical Structures
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174768/1/rds21169.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174768/2/rds21169_am.pdf
dc.identifier.doi10.1029/2022RS007451
dc.identifier.sourceRadio Science
dc.identifier.citedreferenceMoon, H., Teixeira, F. L., & Donderici, B. ( 2014 ). Stable pseudoanalytical computation of electromagnetic fields from arbitrarily‐oriented dipoles in cylindrically stratified media. Journal of Computational Physics, 273, 118 – 142. https://doi.org/10.1016/j.jcp.2014.05.006
dc.identifier.citedreferenceBhattacharya, D., Ghosh, B., & Sarabandi, K. ( 2017 ). Evaluation of efficient closed‐form Green’s function in a cylindrically stratified medium. IEEE Transactions on Antennas and Propagation, 65 ( 3 ), 1505 – 1510. https://doi.org/10.1109/TAP.2016.2647706
dc.identifier.citedreferenceBhattacharya, D., Ghosh, B., Sinha, M., & Kishk, A. A. ( 2020 ). Mode excitation and radiation characteristics of antennas in cylindrically stratified media. IET Microwaves, Antennas & Propagation, 14 ( 10 ), 1027 – 1037. https://doi.org/10.1049/iet-map.2020.0044
dc.identifier.citedreferenceBhattacharyya, A. K. ( 2018a ). Longitudinal spectral solutions for the Sommerfeld half‐space problem: Presenting new perspectives for electromagnetic field solutions in an axially layered structure. IEEE Antennas and Propagation Magazine, 60 ( 6 ), 72 – 82. https://doi.org/10.1109/MAP.2018.2870656
dc.identifier.citedreferenceBhattacharyya, A. K. ( 2018b ). New perspectives for the longitudinal spectral solution of Sommerfeld half‐space problem. USNC‐URSI Radio Science Meeting. Paper presented at 2018. https://doi.org/10.1109/APUSNCURSINRSM.2018.8608263
dc.identifier.citedreferenceCarter, P. S. ( 1943 ). Antenna arrays around cylinders. Proceedings of the IRE, 31 ( 12 ), 671 – 693. https://doi.org/10.1109/JRPROC.1943.233684
dc.identifier.citedreferenceChew, W. C. ( 1995 ). Waves and fields in inhomogeneous media. IEEE Press.
dc.identifier.citedreferenceDyab, W., Abdallah, M., Sarkar, T. K., & Salazar‐Palma, M. ( 2013a ). On the relation between surface plasmons and Sommerfeld’s surface electromagnetic waves. In Paper presented in 2013 IEEE MTT‐S international microwave symposium digest, seattle, WA, USA. https://doi.org/10.1109/MWSYM.2013.6697672
dc.identifier.citedreferenceDyab, W. M., Sarkar, T. K., & Salazar‐Palma, M. ( 2013b ). A physics‐based Green’s function for analysis of vertical electric dipole radiation over an imperfect ground plane. IEEE Transactions on Antennas and Propagation, 61 ( 8 ), 4148 – 4157. https://doi.org/10.1109/TAP.2013.2265377
dc.identifier.citedreferenceDyab, W. M. G., Sarkar, T. K., Abdallah, M. N., & Salazar‐Palma, M. ( 2016 ). Green’s function using Schelkunoff integrals for horizontal electric dipoles over an imperfect ground plane. IEEE Transactions on Antennas and Propagation, 64 ( 4 ), 1342 – 1355. https://doi.org/10.1109/TAP.2016.2529639
dc.identifier.citedreferenceEbihara, S., & Chew, W. C. ( 2003 ). Calculation of Sommerfeld integrals for modeling vertical dipole array antenna for borehole radar. IEICE ‐ Transactions on Electronics, E86‐C ( 10 ), 2085 – 2096.
dc.identifier.citedreferenceHua, Y., & Sarkar, T. K. ( 1989 ). Generalized pencil‐of‐function method for extracting poles of an EM system from its transient response. IEEE Transactions on Antennas and Propagation, 37 ( 2 ), 229 – 234. https://doi.org/10.1109/8.18710
dc.identifier.citedreferenceKaran, S., & Ertürk, V. B. ( 2014 ). Analysis of input impedance and mutual coupling of microstrip antennas on multilayered circular cylinders using closed‐form Green’s function representations. IEEE Transactions on Antennas and Propagation, 62 ( 11 ), 5485 – 5496. https://doi.org/10.1109/TAP.2014.2357413
dc.identifier.citedreferenceLucke, W. S. ( 1951 ). Electric dipoles in the presence of elliptic and circular cylinders. Journal of Applied Physics, 22 ( 1 ), 14 – 19. https://doi.org/10.1063/1.1699813
dc.identifier.citedreferenceMichalski, K. A., & Mosig, J. R. ( 2015a ). On the surface fields excited by a Hertzian dipole over a layered halfspace: From radio to optical wavelengths. IEEE Transactions on Antennas and Propagation, 63 ( 12 ), 5741 – 5752. https://doi.org/10.1109/TAP.2015.2484422
dc.identifier.citedreferenceMichalski, K. A., & Mosig, J. R. ( 2015b ). The Sommerfeld halfspace problem redux: Alternative field representations, role of Zenneck and surface plasmon waves. IEEE Transactions on Antennas and Propagation, 63 ( 12 ), 5777 – 5790. https://doi.org/10.1109/TAP.2015.2489680
dc.identifier.citedreferenceMoon, H., Teixeira, F. L., & Donderici, B. ( 2015 ). Computation of potentials from current electrodes in cylindrically stratified media: A stable, rescaled semi‐analytical formulation. Journal of Computational Physics, 280, 692 – 709. https://doi.org/10.1016/j.jcp.2014.10.015
dc.identifier.citedreferenceOkhmatovski, V. I., & Cangellaris, A. C. ( 2004 ). Evaluation of layered media Green’s functions via rational function fitting. IEEE Microwave and Wireless Components Letters, 14 ( 1 ), 22 – 24. https://doi.org/10.1109/LMWC.2003.821492
dc.identifier.citedreferencePapas, C. H. ( 1949 ). On the infinitely long cylindrical antenna. Journal of Applied Physics, 20 ( 5 ), 437 – 440. https://doi.org/10.1063/1.1698401
dc.identifier.citedreferenceSarkar, T. K., Dyab, W., Abdallah, M. N., Salazar‐Palma, M., Prasad, M. V. S. N., & Ting, S. W. ( 2014 ). Application of the Schelkunoff formulation to the Sommerfeld problem of a vertical electric dipole radiating over an imperfect ground. IEEE Transactions on Antennas and Propagation, 62 ( 8 ), 4162 – 4170. https://doi.org/10.1109/TAP.2014.2325591
dc.identifier.citedreferenceSchelkunoff, S. A. ( 1936 ). Modified Sommerfeld’s integral and its applications. Proceedings of the Institute of Radio Engineers, 24 ( 10 ), 1388 – 1398. https://doi.org/10.1109/JRPROC.1936.227361
dc.identifier.citedreferenceTokgoz, C., & Dural, G. ( 2000 ). Closed‐form Green’s functions for cylindrically stratified media. IEEE Transactions on Microwave Theory and Techniques, 48 ( 1 ), 40 – 49. https://doi.org/10.1109/22.817470
dc.identifier.citedreferenceWait, J. R. ( 1959 ). Electromagnetic radiation from cylindrical structures. Pergamon.
dc.identifier.citedreferenceXing, G., Xu, H., & Teixeira, F. L. ( 2018 ). Evaluation of eccentered electrode‐type resistivity logging in anisotropic geological formations with a matrix method. IEEE Transactions on Geoscience and Remote Sensing, 56 ( 7 ), 3895 – 3902. https://doi.org/10.1109/TGRS.2018.2815738
dc.identifier.citedreferenceYe, L. F., Chai, S. L., Zhang, H. S., Peng, D., & Xiao, K. ( 2013 ). Solving the axial line problem for fast computation of mixed potential Green’s functions for cylindrically stratified media. IEEE Transactions on Microwave Theory and Techniques, 61 ( 1 ), 23 – 37. https://doi.org/10.1109/TMTT.2012.2228217
dc.identifier.citedreferenceBertuch, T., Vipiana, F., & Vecchi, G. ( 2012 ). Efficient analysis of printed structures of arbitrary shape on coated cylinders via spatial‐domain mixed‐potential Green’s function. IEEE Transactions on Antennas and Propagation, 60 ( 3 ), 1425 – 1439. https://doi.org/10.1109/TAP.2011.2180343
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.