Show simple item record

Tuning Resistive Switching Behavior by Controlling Internal Ionic Dynamics for Biorealistic Implementation of Synaptic Plasticity

dc.contributor.authorYoo, Sangmin
dc.contributor.authorWu, Yuting
dc.contributor.authorPark, Yongmo
dc.contributor.authorLu, Wei D.
dc.date.accessioned2022-09-26T16:02:23Z
dc.date.available2023-09-26 12:02:21en
dc.date.available2022-09-26T16:02:23Z
dc.date.issued2022-08
dc.identifier.citationYoo, Sangmin; Wu, Yuting; Park, Yongmo; Lu, Wei D. (2022). "Tuning Resistive Switching Behavior by Controlling Internal Ionic Dynamics for Biorealistic Implementation of Synaptic Plasticity." Advanced Electronic Materials 8(8): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/174785
dc.description.abstractMemristive devices have demonstrated rich switching behaviors that closely resemble synaptic functions and provide a building block to construct efficient neuromorphic systems. It is demonstrated that resistive switching effects are controlled not only by the external field, but also by the dynamics of various internal state variables that facilitate the ionic processes. The internal temperature, for example, works as a second‐state variable to regulate the ion motion and provides the internal timing mechanism for the native implementation of timing‐ and rate‐based learning rules such as spike timing dependent plasticity (STDP). In this work, it is shown that the 2nd state‐variable in a Ta2O5‐based memristor, its internal temperature, can be systematically engineered by adjusting the material properties and device structure, leading to tunable STDP characteristics with different time constants. When combined with an artificial post‐synaptic neuron, the 2nd‐order memristor synapses can spontaneously capture the temporal correlation in the input streaming events.By tuning material properties and device structures, the internal dynamics of a 2nd‐order memristor can be tailored, allowing it to natively exhibit timing‐based learning rules such as spike‐timing dependent plasticity with adjustable time constants. These memristors can be used to form bio‐realistic networks and naturally process temporal data such as detecting correlation patterns in input spike trains.
dc.publisherSpringer‐Verlag
dc.publisherWiley Periodicals, Inc.
dc.subject.other2nd order memristors
dc.subject.othercorrelation detection
dc.subject.otherneuromorphic computing
dc.subject.otherspike‐timing dependent plasticity
dc.subject.otherspiking neural network (SNN)
dc.titleTuning Resistive Switching Behavior by Controlling Internal Ionic Dynamics for Biorealistic Implementation of Synaptic Plasticity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174785/1/aelm202101025_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174785/2/aelm202101025.pdf
dc.identifier.doi10.1002/aelm.202101025
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceM. Spittel, T. spittel, Part3: Non‐ferrous Alloys ‐ Heavy metals, in Group VIII Advanced Materials and Technologies (Ed: H. Warlimont ), Springer‐Verlag, Berlin Heidelberg 2016.
dc.identifier.citedreferenceInternational Technology Roadmap for Semiconductors, Editioin 2013, Executive Summary, 2013, http://www.itrs2.net/itrs‐reports.html.
dc.identifier.citedreferenceF. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, W. D. Lu, Nat. Electron. 2019, 2, 290.
dc.identifier.citedreferenceS. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 2010, 10, 1297.
dc.identifier.citedreferenceA. Sebastian, M. L. Gallo, R. Khaddam‐Aljameh, E. Eleftheriou, Nat. Nanotechnol. 2020, 15, 529.
dc.identifier.citedreferenceS. Kim, S. J. Kim, K. M. Kim, S. R. Lee, M. Chang, E. Cho, Y. B. Kim, C. J. Kim, U.‐In Chung, I. K. Yoo, Sci. Rep. 2013, 3, 1680.
dc.identifier.citedreferenceS. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, W. D. Lu, Nano Lett. 2015, 15, 2203.
dc.identifier.citedreferenceS. Yang, Y. Tang, R. S. Zucker, J. Neurophysiol. 1999, 81, 781.
dc.identifier.citedreferenceM. A. Zidan, Y. J. Jeong, W. D. Lu, IEEE Trans. Nanotechnol. 2017, 16, 721.
dc.identifier.citedreferenceS. Yu, S. Member, Y. Wu, R. Jeyasingh, D. Kuzum, H. P. Wong, IEEE Trans. Electron Devices 2011, 58, 2729.
dc.identifier.citedreferenceT. Serrano‐Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, B. Linares‐Barranco, Front. Neurosci. 2013, 7, 2.
dc.identifier.citedreferenceY. Guo, H. Wu, B. Gao, H. Qian, Front. Neurosci. 2019, 13, 812.
dc.identifier.citedreferenceP. Diehl, M. Cook, Front. Comput. Neurosci. 2015, 9, 99.
dc.identifier.citedreferenceS. H. Lee, J. Moon, Y. J. Jeong, J. Lee, X. Li, H. Wu, W. D. Lu, ACS Appl. Electron. Mater. 2020, 2, 701.
dc.identifier.citedreferenceK. G. Schmidt, Heat ATLAS, Springer‐Verlag, Berlin Heidelberg 2010.
dc.identifier.citedreferenceJ. R. Rumble, CRC Handbook of Chemistry and Physics, 101st ed., CRC Press, Boca Raton, Florida 2020.
dc.identifier.citedreferenceX. Zhang, H. Xie, M. Fuji, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Appl. Phys. Lett. 2005, 86, 171912.
dc.identifier.citedreferenceJ. Lee, W. Schell, X. Zhu, E. Kioupakis, W. D. Lu, ACS Appl. Mater. Interfaces 2019, 11, 11579.
dc.identifier.citedreferenceR. Gütig, R. Aharonov, S. Rotter, H. Sompolinsky, J. Neurosci. 2003, 23, 3697.
dc.identifier.citedreferenceS. Kim, S. Choi, W. Lu, ACS Nano 2014, 8, 2369.
dc.identifier.citedreferenceL. Boteler, A. Lelis, M. Berman, M. Fish, 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications, IEEE, Piscataway 2019, p. 265.
dc.identifier.citedreferenceY. Wu, J. Moon, X. Zhu, W. D. Lu, Adv. Intell. Syst. 2021, 3, 2000276.
dc.identifier.citedreferenceM. Prezioso, M. R. Mahmoodi, F. M. Bayat, H. Nili, H. Kim, A. Vincent, D. B. Strukov, Nat. Commun. 2018, 9, 5311.
dc.identifier.citedreferenceT. Tuma, M. L. Gallo, A. Sebastian, S. Member, IEEE Electron Device Lett. 2016, 37, 1238.
dc.identifier.citedreferenceA. Sebastian, T. Tuma, N. Papandreou, M. L.e Gallo, L. Kull, T. Parnell, E. Eleftheriou, Nat. Commun. 2017, 8, 1115.
dc.identifier.citedreferenceY. J. Jeong, S. Kim, W. D. Lu, Appl. Phys. Lett. 2015, 107, 173105.
dc.identifier.citedreferenceC. Du, W. Ma, T. Chang, P. Sheridan, W. D. Lu, Adv. Funct. Mater. 2015, 25, 4290.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.