Show simple item record

AlScN- on- SiC Thin Film Micromachined Resonant Transducers Operating in High- Temperature Environment up to 600 °C

dc.contributor.authorSui, Wen
dc.contributor.authorWang, Haoran
dc.contributor.authorLee, Jaesung
dc.contributor.authorQamar, Afzaal
dc.contributor.authorRais-Zadeh, Mina
dc.contributor.authorFeng, Philip X.-L.
dc.date.accessioned2022-09-26T16:05:19Z
dc.date.available2023-09-26 12:05:16en
dc.date.available2022-09-26T16:05:19Z
dc.date.issued2022-08
dc.identifier.citationSui, Wen; Wang, Haoran; Lee, Jaesung; Qamar, Afzaal; Rais-Zadeh, Mina ; Feng, Philip X.-L. (2022). "AlScN- on- SiC Thin Film Micromachined Resonant Transducers Operating in High- Temperature Environment up to 600 °C." Advanced Functional Materials 32(34): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/174842
dc.description.abstractThe experimental demonstration of aluminum scandium nitride (AlScN)- on- cubic silicon carbide (SiC) heterostructure thin film micromachined resonant transducers operating in a high- temperature environment up to 600 °C is reported. Macroscopic and microscopic vibrations are investigated through a combination of ultrasensitive laser interferometry techniques and Raman spectroscopy. An average linear temperature coefficient of resonance frequency (TCf) of <1 ppm °C- 1 within the temperature range from room temperature to 200 °C, and an average linear TCf of - 16 ppm °C- 1 between 200 and 600 °C, from the fundamental- mode resonance of AlScN/SiC circular diaphragm resonator with a thickness of 1.9 µm and diameter of 250 µm, is obtained. Higher- order modes exhibit much larger TCf, which make them strong candidates as high- temperature- tolerant temperature sensors or ultraviolet detectors. Raman spectroscopy indicates that the turning points of the peak positions of the longitudinal optical phonon modes of both 3C- SiC and AlScN occur in almost the same temperature region where the turnover point of TCf is observed, suggesting that the microscopic vibrations in the crystal lattice and the macroscopic oscillation of the diaphragm are naturally mediated by the residual strain inside the materials at varying temperature.This work demonstrates aluminum scandium nitride on silicon carbide (AlScN/SiC) heterostructure thin film micromachined resonant transducers operating in a high- temperature environment up to 600 °C. Macroscopic and microscopic vibrations are investigated through a combination of laser interferometry techniques and Raman spectroscopy. The results provide insight for understanding the resonant characteristics and intrinsic material properties of AlScN/SiC at both device and crystal structure levels.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherresonators
dc.subject.othermicro/nanoelectromechanical systems
dc.subject.otherhigh temperature
dc.subject.otherharsh environment
dc.subject.otheraluminum scandium nitride
dc.subject.othermicromachined transducers
dc.titleAlScN- on- SiC Thin Film Micromachined Resonant Transducers Operating in High- Temperature Environment up to 600 °C
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174842/1/adfm202202204_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174842/2/adfm202202204.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174842/3/adfm202202204-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adfm.202202204
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceC. M. Lin, T. T. Yen, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, A. P. Pisano, Appl. Phys. Lett. 2010, 97, 083501.
dc.identifier.citedreferenceB. A. Griffin, S. D. Habermehl, P. J. Clews, in Proc. Sensors for Extreme Harsh Environments, SPIE Sensing Technology and Applications, Baltimore, Maryland, United States 2014.
dc.identifier.citedreferenceJ. Komiyama, K. Eriguchi, Y. Abe, S. Suzuki, H. Nakanishi, T. Yamane, H. Murakami, A. Koukitu, J. Cryst. Growth 2008, 310, 96.
dc.identifier.citedreferenceM. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, N. Kawahara, Adv. Mater. 2008, 21, 593.
dc.identifier.citedreferenceF. Ayazi, L. Sorenson, R. Tabrizian, in Proc. Micro- and Nanotechnology Sensors, Systems, and Applications III, Vol. 8031, SPIE, May 2011, pp. 371 - 383.
dc.identifier.citedreferenceH. P. Phan, T. K. Nguyen, T. Dinh, A. Iacopi, L. Hold, M. J. Shiddiky, D. V. Dao, N. T. Nguyen, Adv. Eng. Mater. 2018, 20, 1700858.
dc.identifier.citedreferenceM. Noraini, Y. M. Burhanuddin, Y. Faisal Mohd, Z. A. Hafzaliza Erny, H. Azrul Azlan, Int. J. Nanoelectron. 2020, 13, 113.
dc.identifier.citedreferenceM. Mehregany, C. A. Zorman, N. Rajan, C. H. Wu, Proc. IEEE 1998, 86, 1594.
dc.identifier.citedreferenceA. Qamar, H. P. Phan, T. Dinh, N. T. Nguyen, M. Rais- Zadeh, Appl. Phys. Lett. 2020, 116, 132902.
dc.identifier.citedreferenceW. B. Wang, Y. Q. Fu, J. J. Chen, W. P. Xuan, J. K. Chen, X. Z. Wang, P. Mayrhofer, P. F. Duan, A. Bittner, U. Schmid, J. K. Luo, J. Micromech. Microeng. 2016, 26, 075006.
dc.identifier.citedreferenceV. J. Gokhale, B. P. Downey, M. T. Hardy, E. N. Jin, J. A. Roussos, D. J. Meyer, presented at Proc. IEEE 33 th Int. Conf. Micro Electro Mech. Syst. (MEMS), Jan. 2020.
dc.identifier.citedreferenceK. Y. Hashimoto, S. Sato, A. Teshigahara, T. Nakamura, K. Kano, IEEE Trans. Sonics Ultrason. 2013, 60, 637.
dc.identifier.citedreferenceM. Rinaldi, A. Tazzoli, J. Segovia- Fernandez, V. Felmetsger, G. Piazza, presented at Proc. IEEE 25 th Int. Conf. Micro Electro Mech. Syst. (MEMS), Paris, France, Feb., 2012.
dc.identifier.citedreferenceG. Piazza, P. J. Stephanou, A. P. Pisano, J. Microelectromech. Syst. 2006, 15, 1406.
dc.identifier.citedreferenceM. Pozzi, M. Hassan, A. J. Harris, J. S. Burdess, L. Jiang, K. K. Lee, R. Cheung, G. J. Phelps, N. G. Wright, C. A. Zorman, M. Mehregany, J. Phys. D: Appl. Phys. 2007, 40, 3335.
dc.identifier.citedreferenceG. Wu, J. Xu, E. J. Ng, W. Chen, J. Microelectromech. Syst. 2020, 29, 1137.
dc.identifier.citedreferenceH. Suzuki, N. Yamaguchi, H. Izumi, Acoust. Sci. Technol. 2009, 30, 348.
dc.identifier.citedreferenceD. N. Talwar, L. Wan, C. C. Tin, Z. C. Feng, J. Mater. Sci. Eng. 2017, 6, 2169.
dc.identifier.citedreferenceV. Lughi, D. R. Clarke, Appl. Phys. Lett. 2006, 89, 241911.
dc.identifier.citedreferenceG. S. Chung, K. S. Kim, Microelectron. J. 2008, 39, 1405.
dc.identifier.citedreferenceY. Tanaka, Y. Hasebe, T. Inushima, A. Sandhu, S. Ohoya, J. Cryst. Growth 2000, 209, 410.
dc.identifier.citedreferenceR. Deng, K. Jiang, D. Gall, J. Appl. Phys. 2014, 115, 013506.
dc.identifier.citedreferenceA. L. Mock, A. G. Jacobs, E. N. Jin, M. T. Hardy, M. J. Tadjer, Appl. Phys. Lett. 2020, 117, 232107.
dc.identifier.citedreferenceY. Song, C. Perez, G. Esteves, J. S. Lundh, C. B. Saltonstall, T. E. Beechem, J. I. Yang, K. Ferri, J. E. Brown, Z. Tang, J. P. Maria, ACS Appl. Mater. Interfaces 2021, 13, 19031.
dc.identifier.citedreferenceV. Lysenko, D. Barbier, B. Champagnon, Appl. Phys. Lett. 2001, 79, 2366.
dc.identifier.citedreferenceW. L. Zhu, J. L. Zhu, S. Nishino, G. Pezzotti, Appl. Surf. Sci. 2006, 252, 2346.
dc.identifier.citedreferenceM. Balkanski, R. F. Wallis, E. Haro, Phys. Rev. B 1983, 28, 1928.
dc.identifier.citedreferenceY. Chen, B. Peng, B. Wang, J. Phys. Chem. C 2007, 111, 5855.
dc.identifier.citedreferenceS. Khachadorian, H. Scheel, A. Colli, A. Vierck, C. Thomsen, Phys. Status Solidi B 2010, 247, 3084.
dc.identifier.citedreferenceO. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y.- A. Peter, H. Zappe, J. Microelectromech. Syst. 2014, 23, 517.
dc.identifier.citedreferenceP. X.- L. Feng, D. J. Young, C. A. Zorman, in MEMS/NEMS Devices and Applications (Ed: B. Bhushan ), Springer Handbook of Nanotechnology, Springer, Berlin, Heidelberg 2017, Ch. 13, pp. 395 - 429.
dc.identifier.citedreferenceA. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, Sens. Actuators B 2008, 130, 917.
dc.identifier.citedreferenceW. J. Fleming, IEEE Sens. J. 2001, 1, 296.
dc.identifier.citedreferenceJ. X. Wang, X. M. Qian, Appl. Mech. Mater. 2014, 643, 72.
dc.identifier.citedreferenceG. Esteves, S. D. Habermehl, P. J. Clews, C. Fritch, B. A. Griffin, J. Microelectromech. Syst. 2019, 28, 859.
dc.identifier.citedreferenceN. Marsi, B. Y. Majlis, A. A. Hamzah, F. Mohd- Yasin, Energy Procedia 2015, 68, 471.
dc.identifier.citedreferenceG. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. A. Zorman, J. M. Moran, J. Melzak, Biomaterials 2002, 23, 2737.
dc.identifier.citedreferenceA. Chaalane, R. Chemam, M. Houabes, R. Yahiaoui, A. Metatla, B. Ouari, N. Metatla, D. Mahi, A. Dkhissi, D. Esteve, J. Phys.: Conf. Ser. 2015, 660, 012137.
dc.identifier.citedreferenceT. G. Brown, IEEE Sens. 2003, 2, 753.
dc.identifier.citedreferenceW. Sui, X.- Q. Zheng, J.- T. Lin, B. W. Alphenaar, P. X.- L. Feng, J. Microelectromech. Syst. 2021, 30, 521.
dc.identifier.citedreferenceH. Chen, H. Jia, W. Liao, V. Pashaei, C. N. Arutt, M. W. McCurdy, C. A. Zorman, R. A. Reed, R. D. Schrimpf, M. L. Alles, P. X.- L. Feng, Appl. Phys. Lett. 2019, 114, 101901.
dc.identifier.citedreferenceJ. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, W. I. Milne, J. Micromech. Microeng. 2007, 17, S147.
dc.identifier.citedreferenceK. Tonisch, V. Cimalla, Ch. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Sens. Actuators A 2006, 123, 658.
dc.identifier.citedreferenceK. Kishi, Y. Ooishi, H. Noma, E. Ushijima, N. Ueno, M. Akiyama, T. Tabaru, J. Eur. Ceram. Soc. 2006, 26, 3425.
dc.identifier.citedreferenceC. M. Lin, W. C. Lien, V. V. Felmetsger, M. A. Hopcroft, D. G. Senesky, A. P. Pisano, Appl. Phys. Lett. 2010, 97, 141907.
dc.identifier.citedreferenceO. Zywitzki, T. Modes, S. Barth, H. Bartzsch, P. Frach, Surf. Coat. Technol. 2017, 309, 417.
dc.identifier.citedreferenceM. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, N. Kawahara, Adv. Mater. 2009, 21, 593.
dc.identifier.citedreferenceO. E. Contreras, F. Ruiz- Zepeda, A. Dadgar, A. Krost, F. A. Ponce, Appl. Phys. Express 2008, 1, 061104.
dc.identifier.citedreferenceA. Tanaka, W. Choi, R. Chen, S. A. Dayeh, Adv. Mater. 2017, 29, 1702557.
dc.identifier.citedreferenceY. Feng, H. Wei, S. Yang, Z. Chen, L. Wang, S. Kong, G. Zhao, X. Liu, Sci. Rep. 2014, 4, 6416.
dc.identifier.citedreferenceA. Pandey, S. Dutta, R. Prakash, R. Raman, A. K. Kapoor, D. Kaur, J. Electron. Mater. 2018, 47, 1405.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.