Show simple item record

Energy layer optimization via energy matrix regularization for proton spot-scanning arc therapy

dc.contributor.authorZhang, Gezhi
dc.contributor.authorShen, Haozheng
dc.contributor.authorLin, Yuting
dc.contributor.authorChen, Ronald C
dc.contributor.authorLong, Yong
dc.contributor.authorGao, Hao
dc.date.accessioned2022-10-05T15:51:55Z
dc.date.available2023-10-05 11:51:53en
dc.date.available2022-10-05T15:51:55Z
dc.date.issued2022-09
dc.identifier.citationZhang, Gezhi; Shen, Haozheng; Lin, Yuting; Chen, Ronald C; Long, Yong; Gao, Hao (2022). "Energy layer optimization via energy matrix regularization for proton spot-scanning arc therapy." Medical Physics 49(9): 5752-5762.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/174927
dc.description.abstractPurposeSpot-scanning arc therapy (SPArc) is an emerging proton modality that can potentially offer a combination of advantages in plan quality and delivery efficiency, compared with traditional IMPT of a few beam angles. Unlike IMPT, frequent low-to-high energy layer switching (so called switch-up (SU)) can degrade delivery efficiency for SPArc. However, it is a tradeoff between the minimization of SU times and the optimization of plan quality. This work will consider the energy layer optimization (ELO) problem for SPArc and develop a new ELO method via energy matrix (EM) regularization to improve plan quality and delivery efficiency.MethodsThe major innovation of EM method for ELO is to design an EM that encourages desirable energy-layer map with minimal SU during SPArc, and then incorporate this EM into the SPArc treatment planning to simultaneously minimize the number of SU and optimize plan quality. The EM method is solved by the fast iterative shrinkage-thresholding algorithm and validated in comparison with a state-of-the-art method, so-called energy sequencing (ES).ResultsEM is validated and compared with ES using representative clinical cases. In terms of delivery efficiency, EM had fewer SU than ES with an average of 35% reduction of SU. In terms of plan quality, compared with ES, EM had smaller optimization objective values and better target dose conformality, and generally lower dose to organs-at-risk and lower integral dose to body. In terms of computational efficiency, EM was substantially more efficient than ES by at least 10-fold.ConclusionWe have developed a new ELO method for SPArc using EM regularization and shown that this new method EM can improve both delivery efficiency and plan quality, with substantially reduced computational time, compared with ES.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherenergy layer optimization
dc.subject.otherIMPT
dc.subject.otherSPArc
dc.titleEnergy layer optimization via energy matrix regularization for proton spot-scanning arc therapy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174927/1/mp15836_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174927/2/mp15836.pdf
dc.identifier.doi10.1002/mp.15836
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceParikh, N, and Boyd S, “Proximal algorithms.” Found Trends® Mach Learn. 2014; 1 ( 3 ), 127 – 239.
dc.identifier.citedreferenceDeasy J, Mackie T, DeLuca P. Method and apparatus for proton therapy. 1997.
dc.identifier.citedreferenceSandison GA, Papiez E, Block C, et al., Phantom assessment of lung dose from proton arc therapy. Int J Radiat Oncol Biol Phys. 1997; 38: 891 – 897.
dc.identifier.citedreferenceDing X, Li X, Zhang JM, et al., Spot-scanning proton arc (SPArc) therapy: the first robust and delivery-efficient spot-scanning proton arc therapy. Int J Radiat Oncol Biol Phys. 2016; 96: 1107 – 1116.
dc.identifier.citedreferenceLi X, Kabolizadeh P, Yan D, et al., Improve dosimetric outcome in stage III non-small-cell lung cancer treatment using spot-scanning proton arc (SPArc) therapy. Radiat Oncol. 2018; 13: 35.
dc.identifier.citedreferenceDing X, Li X, Qin A, et al., Have we reached proton beam therapy dosimetric limitations?—A novel robust, delivery-efficient and continuous spot-scanning proton arc (SPArc) therapy is to improve the dosimetric outcome in treating prostate cancer. Acta Oncol (Madr). 2018; 57: 435 – 437.
dc.identifier.citedreferenceDing X, Zhou J, Li X, et al., Improving dosimetric outcome for hippocampus and cochlea sparing whole brain radiotherapy using spotscanning proton arc therapy. Acta Oncol (Madr). 2019; 58: 483 – 490.
dc.identifier.citedreferenceLi X, Liu G, Janssens G, et al., The first prototype of spot-scanning proton arc treatment delivery. Radiother Oncol. 2019; 137: 130 – 136.
dc.identifier.citedreferenceGu Wenbo, et al., A novel energy layer optimization framework for spot-scanning proton arc therapy. Med Phys. 2020; 47.5, 2072 – 2084.
dc.identifier.citedreferenceGao H, Hybrid proton-photon inverse optimization with uniformity-regularized proton and photon target dose. Phys Med Biol. 2019; 64: 105003.
dc.identifier.citedreferenceGao H, Lin B, Lin Y, et al., Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy. Med Phys. 2020; 47: 6388 – 6395.
dc.identifier.citedreferenceGao H, Liu J, Lin Y, et al., Simultaneous dose and dose rate optimization (SDDRO) of the FLASH effect for pencil-beam-scanning proton therapy. Med Phys. 2022; 49: 2014 – 2025.
dc.identifier.citedreferenceGu W, O’Connor D, Nguyen D, et al., Integrated beam orientation and scanning-spot optimization in intensity-modulated proton therapy for brain and unilateral head and neck tumors. Med Phys. 2018; 45: 1338 – 1350.
dc.identifier.citedreferenceBeck A, Teboulle M, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J Imaging Sci. 2009; 2: 183 – 202.
dc.identifier.citedreferenceBoyd S, Parikh N, Chu E, et al., Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn. 2011; 3: 1 – 122.
dc.identifier.citedreferenceGoldstein T, and Osher S, The split Bregman algorithm for l1 regularized problems. SIAM J Imaging Sci. 2009; 2: 323 – 343.
dc.identifier.citedreferenceWieser HP, Cisternas E, Wahl N, et al., Development of the open-source dose calculation and optimization toolkit matRad. Med Phys. 2017; 44: 2556 – 2568.
dc.identifier.citedreferenceLin Y, Kooy H, Craft D et al., A Greedy reassignment algorithm for the PBS minimum monitor unit constraint. Phys Med Biol. 2016; 61: 4665 – 4678.
dc.identifier.citedreferenceGao H, Clasie BM, Liu T et al., Minimum MU optimization (MMO): an inverse optimization approach for the PBS minimum MU constraint. Phys Med Biol. 2019; 64: 125022.
dc.identifier.citedreferenceLin Y, Clasie BM, Liu T et al., Minimum-MU and sparse-energy-level (MMSEL) constrained inverse optimization method for efficiently deliverable PBS plans. Phys Med Biol. 2019; 64: 205001.
dc.identifier.citedreferenceGao H, Clasie BM, McDonald M et al., Plan-delivery-time constrained inverse optimization method with minimum-MU-per-energy-layer (MMPEL) for efficient pencil beam scanning proton therapy. Med Phys. 2020; 47: 3892 – 3897.
dc.identifier.citedreferenceCai JF, Chen RC, Fan J, and Gao H, Minimum-monitor-unit optimization via a stochastic coordinate descent method. Phys Med Biol. 2022; 67: 015009.
dc.identifier.citedreferenceWu Q, Mohan R, Morris M, et al., Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys. 2003; 56: 573 – 585.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.