Show simple item record

Stratified Cox models with time-varying effects for national kidney transplant patients: A new blockwise steepest ascent method

dc.contributor.authorHe, Kevin
dc.contributor.authorZhu, Ji
dc.contributor.authorKang, Jian
dc.contributor.authorLi, Yi
dc.date.accessioned2022-10-05T15:54:06Z
dc.date.available2023-10-05 11:54:04en
dc.date.available2022-10-05T15:54:06Z
dc.date.issued2022-09
dc.identifier.citationHe, Kevin; Zhu, Ji; Kang, Jian; Li, Yi (2022). "Stratified Cox models with time-varying effects for national kidney transplant patients: A new blockwise steepest ascent method." Biometrics 78(3): 1221-1232.
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.urihttps://hdl.handle.net/2027.42/174973
dc.description.abstractAnalyzing the national transplant database, which contains about 300,000 kidney transplant patients treated in over 290 transplant centers, may guide the disease management and inform the policy of kidney transplantation. Cox models stratified by centers provide a convenient means to account for the clustered data structure, while studying more than 160 predictors with effects that may vary over time. As fitting a time-varying effect model with such a large sample size may defy any existing software, we propose a blockwise steepest ascent procedure by leveraging the block structure of parameters inherent from the basis expansions for each coefficient function. The algorithm iteratively updates the optimal blockwise search direction, along which the increment of the partial likelihood is maximized. The proposed method can be interpreted from the perspective of the minorization-maximization algorithm and increases the partial likelihood until convergence. We further propose a Wald statistic to test whether the effects are indeed time varying. We evaluate the utility of the proposed method via simulations. Finally, we apply the method to analyze the national kidney transplant data and detect the time-varying nature of the effects of various risk factors.
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherstratified model
dc.subject.otherkidney transplant
dc.subject.othersteepest ascent
dc.subject.othersurvival analysis
dc.subject.othertime-varying effects
dc.titleStratified Cox models with time-varying effects for national kidney transplant patients: A new blockwise steepest ascent method
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174973/1/biom13473_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/174973/2/biom13473.pdf
dc.identifier.doi10.1111/biom.13473
dc.identifier.sourceBiometrics
dc.identifier.citedreferenceRobbins, H. and Monro, S. ( 1951 ) A stochastic approximation method. The Annals of Mathematical Statistics, 22 ( 3 ), 400 – 407.
dc.identifier.citedreferenceLange, K. ( 2012 ) Optimization, 2nd edition. New York: Springer.
dc.identifier.citedreferenceLin, D. and Wei, L. ( 1989 ) The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association, 84 ( 408 ), 1074 – 1078.
dc.identifier.citedreferenceMcLachlan, G.J. and Krishnan, T. ( 2007 ) The EM Algorithm and Extensions. 2nd edition. Hoboken, NJ: Wiley.
dc.identifier.citedreferenceMeier-Kriesche, H.U., Port, F.K., Ojo, A.O., Rudich, S.M., Hanson, J.A., Cibrik, D.M. et al. ( 2000 ) Effect of waiting time on renal transplant outcome. Kidney International, 58 ( 3 ), 1311 – 1317.
dc.identifier.citedreferenceMuntean, A. and Lucan, M. ( 2013 ) Immunosuppression in kidney transplantation. Clujul Medical, 86, 177 – 180.
dc.identifier.citedreferencePan, W. ( 2002 ) A note on the use of marginal likelihood and conditional likelihood in analyzing clustered data. The American Statistician, 56, 171 – 174.
dc.identifier.citedreferencePerperoglou, A., le Cessie, S. and van Houwelingen, H.C. ( 2006 ) A fast routine for fitting Cox models with time varying effects of the covariates. Computer Methods and Programs in Biomedicine, 25, 154 – 161.
dc.identifier.citedreferencePuoti, F., Ricci, A., Nanni-Costa, A., Ricciardi, W., Malorni, W. and Ortona, E. ( 2016 ) Organ transplantation and gender differences: a paradigmatic example of intertwining between biological and sociocultural determinants. Biology of Sex Differences, 7, 35.
dc.identifier.citedreferenceQian, N. ( 1999 ) On the momentum term in gradient descent learning algorithms. Neural Networks, 12 ( 1 ), 145 – 151.
dc.identifier.citedreferenceRozanski, J., Kozlowska, I. and Myslak, M. ( 2005 ) Pretransplant nephrectomy in patients with autosomal dominant polycystic kidney disease. Transplant Proceedings, 37, 666 – 668.
dc.identifier.citedreferenceRuder, S. ( 2016 ) An overview of gradient descent optimization algorithm. arXiv preprint. arXiv:1609.04747.
dc.identifier.citedreferenceSaran, R., Robinson, B. and Abbott, K.C. et al. ( 2018 ) US Renal Data System 2017 annual data report: epidemiology of kidney disease in the United States. American Journal of Kidney Diseases, 71 ( 3 ), S1 – S672.
dc.identifier.citedreferenceSchaubel, D.E. and Cai, J. ( 2005 ) Semiparametric methods for clustered recurrent event data. Lifetime Data Analysis, 11 ( 3 ), 405 – 425.
dc.identifier.citedreferenceSnyder, J.J., Salkowski, N., Kim, S.J., Zaun, D., Xiong, H., Israni, A.K. et al. ( 2016 ) Developing statistical models to assess transplant outcomes using national registries: the process in the United States. Transplantation, 100 ( 2 ), 288 – 294.
dc.identifier.citedreferenceTian, L., Zucker, D. and Wei, L. ( 2005 ) On the Cox model with time-varying regression coefficients. Journal of the American Statistical Association, 100 ( 469 ), 72 – 183.
dc.identifier.citedreferenceVerweij, P.J.M. and van Houwelingen, H.C. ( 1993 ) Cross-validation in survival analysis. Statistics in Medicine, 12 ( 24 ), 2305 – 2314.
dc.identifier.citedreferenceWolfe, R.A., Ashby, V.B., Milford, E.L., Ojo, A.O., Ettenger, R.E., Agodoa, L.Y. et al. ( 1999 ) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation and recipients of a first cadaveric transplant. New England Journal of Medicine, 341 ( 23 ), 1725 – 1730.
dc.identifier.citedreferenceXiao, W., Lu, W. and Zhang, H.H. ( 2016 ) Joint structure selection and estimation in the time-varying coefficient Cox model. Statistica Sinica, 26 ( 2 ), 547 – 567.
dc.identifier.citedreferenceYan, J. and Huang, J. ( 2012 ) Model selection for Cox models with time-varying coefficients. Biometrics, 68 ( 2 ), 419 – 428.
dc.identifier.citedreferenceYu, Z., Liu, L., Bravata, D.M. and Williams, L.S. ( 2014 ) Joint model of recurrent events and a terminal event with time-varying coefficients. Biometrical Journal, 56, 183 – 197.
dc.identifier.citedreferenceZeiler, M.D. ( 2012 ) ADADELTA: an adaptive learning rate method. arXiv preprint. arXiv:1212.5701.
dc.identifier.citedreferenceZhang, H. and Lu, W. ( 2006 ) Adaptive lasso for Cox’s proportional hazards model. Biometrika, 94 ( 3 ), 691 – 703.
dc.identifier.citedreferenceZou, H. ( 2006 ) The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101 ( 476 ), 1418 – 1429.
dc.identifier.citedreferenceZucker, D.M. and Karr, A.F. ( 1990 ) Nonparametric survival analysis with time-dependent covariate effects: a penalized partial likelihood approach. Annals of Statistics, 18 ( 1 ), 329 – 353.
dc.identifier.citedreferenceHofner, B., Hothorn, T. and Kneib, T. ( 2013 ) Variable selection and model choice in structured survival models. Computational Statistics, 28, 1079 – 1101.
dc.identifier.citedreferenceHonda, T. and Härdle, W.K. ( 2014 ) Variable selection in Cox regression models with varying coefficients. Journal of Statistical Planning and Inference, 148, 67 – 81.
dc.identifier.citedreferenceKalantar-Zadeh, K. ( 2005 ) Causes and consequences of the reverse epidemiology of body mass index in dialysis patients. Journal of Renal Nutrition, 15, 142 – 147.
dc.identifier.citedreferenceBoyd, S. and Vandenberghe, L. ( 2004 ) Convex Optimization. New York: Cambridge University Press.
dc.identifier.citedreferenceBühlmann, P. and Yu, B. ( 2003 ) Boosting with the L 2 loss: regression and classification. Journal of the American Statistical Association, 98 ( 462 ), 324 – 339.
dc.identifier.citedreferenceBühlmann, P. and Yu, B. ( 2006 ) Boosting for high-dimensional linear models. Annals of Statistics, 34 ( 2 ), 559 – 583.
dc.identifier.citedreferenceChen, X., Sun, J. and Liu, L. ( 2015 ) Semiparametric partial linear quantile regression of longitudinal data with time varying coefficients and informative observation times. Statistica Sinica, 25 ( 4 ), 1437 – 1458.
dc.identifier.citedreferenceCox, D.R. ( 1972 ) Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B, 34 ( 2 ), 187 – 200.
dc.identifier.citedreferenceDekker, F.W., Mutsert, R., Dijk, P.C., Zoccali, C. and Jager, K.J. ( 2008 ) Survival analysis: time-dependent effects and time-varying risk factors. Kidney International, 74, 994 – 997.
dc.identifier.citedreferenceDiederik, P.K. and Jimmy, L.B. ( 2015 ) Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1 – 13.
dc.identifier.citedreferenceDuchi, J., Hazan, E. and Singer, Y. ( 2011 ) Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121 – 2159.
dc.identifier.citedreferenceEstes, J.P., Nguyen, D.V., Chen, Y., Dalrymple, L.S., Rhee, C.M., Kalantar-Zadeh, K. et al. ( 2018 ) Time-dynamic profiling with application to hospital readmission among patients on dialysis. Biometrics, 74 ( 4 ), 1383 – 1394.
dc.identifier.citedreferenceFrohnert, P.P., Donadio, J.V. Jr, Velosa, J.A., Holley, K.E. and Sterioff, S. ( 1997 ) The fate of renal transplants in patients with IgA nephropathy. Clinical Transplant, 11 ( 2 ), 127 – 133.
dc.identifier.citedreferenceGrambsch, P. and Therneau, T. ( 1994 ) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81 ( 3 ), 515 – 526.
dc.identifier.citedreferenceGray, R.J. ( 1992 ) Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association, 87 ( 420 ), 942 – 951.
dc.identifier.citedreferenceGray, R.J. ( 1994 ) Spline-based tests in survival analysis. Biometrics, 50 ( 3 ), 640 – 652.
dc.identifier.citedreferenceHadimeri, H., Norden, G., Friman, S. and Nyberg, G. ( 1997 ) Autosomal dominant polycystic kidney disease in a kidney transplant population. Nephrology Dialysis Transplantation, 12, 1431 – 1436.
dc.identifier.citedreferenceHarding, K., Mersha, T.B., Pham, P.T., Waterman, A.D., Webb, F.A., Vassalotti, J.A. et al. ( 2017 ) Health disparities in kidney transplantation for African Americans. American Journal of Nephrology, 46 ( 2 ), 165 – 175.
dc.identifier.citedreferenceHastie, T. and Tibshirani, R.J. ( 1993 ) Varying-coefficient models. Journal of the Royal Statistical Society, Series B, 55 ( 4 ), 757 – 796.
dc.identifier.citedreferenceHe, K., Li, Y.M., Wei, Q.Y. and Li, Y. ( 2017 ) Computationally efficient approach for modeling complex and big survival data. In: Ahmed, S. (ed) Big and Complex Data Analysis: Statistical Methodologies and Applications. Cham: Springer, pp. 193 – 207.
dc.identifier.citedreferenceHe, K., Li, Y.M., Zhu, J., Liu, H.L., Lee, J.E., Amos, C.I. et al. ( 2016 ) Component-wise gradient boosting and false discovery control in survival analysis with high-dimensional covariates. Bioinformatics, 32 ( 1 ), 50 – 57.
dc.identifier.citedreferenceHe, K. and Schaubel, D.E. ( 2014 ) Methods for estimating center effects in survival analysis using direct standardization. Statistics in Medicine, 33 ( 12 ), 2048 – 2061.
dc.identifier.citedreferenceHe, K. and Schaubel, D.E. ( 2015 ) Standardized mortality ratio for evaluating center-specific mortality: assessment and alternative. Statistics in Biosciences, 7, 296 – 321.
dc.identifier.citedreferenceHe, K., Yang, Y., Li, Y.M., Zhu, J. and Li, Y. ( 2017 ) Modeling time-varying effects with large-scale survival data: an efficient quasi-Newton approach. Journal of Computational and Graphical Statistics, 26 ( 3 ), 635 – 645.
dc.identifier.citedreferenceKalbfleisch, J.D. and Wolfe, R.A. ( 2013 ) On monitoring outcomes of medical providers. Statistics in Biosciences, 2, 286 – 302.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.