Show simple item record

BayeStab: Predicting effects of mutations on protein stability with uncertainty quantification

dc.contributor.authorWang, Shuyu
dc.contributor.authorTang, Hongzhou
dc.contributor.authorZhao, Yuliang
dc.contributor.authorZuo, Lei
dc.date.accessioned2022-11-09T21:17:14Z
dc.date.available2023-12-09 16:17:13en
dc.date.available2022-11-09T21:17:14Z
dc.date.issued2022-11
dc.identifier.citationWang, Shuyu; Tang, Hongzhou; Zhao, Yuliang; Zuo, Lei (2022). "BayeStab: Predicting effects of mutations on protein stability with uncertainty quantification." Protein Science 31(11): n/a-n/a.
dc.identifier.issn0961-8368
dc.identifier.issn1469-896X
dc.identifier.urihttps://hdl.handle.net/2027.42/175072
dc.description.abstractPredicting protein thermostability change upon mutation is crucial for understanding diseases and designing therapeutics. However, accurately estimating Gibbs free energy change of the protein remained a challenge. Some methods struggle to generalize on examples with no homology and produce uncalibrated predictions. Here we leverage advances in graph neural networks for protein feature extraction to tackle this structure–property prediction task. Our method, BayeStab, is then tested on four test datasets, including S669, S611, S350, and Myoglobin, showing high generalization and symmetry performance. Meanwhile, we apply concrete dropout enabled Bayesian neural networks to infer plausible models and estimate uncertainty. By decomposing the uncertainty into parts induced by data noise and model, we demonstrate that the probabilistic method allows insights into the inherent noise of the training datasets, which is closely relevant to the upper bound of the task. Finally, the BayeStab web server is created and can be found at: http://www.bayestab.com. The code for this work is available at: https://github.com/HongzhouTang/BayeStab.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otheruncertainty quantification
dc.subject.otherweb server
dc.subject.otherprotein stability change
dc.subject.otherconcrete dropout
dc.subject.othergraph neural network
dc.titleBayeStab: Predicting effects of mutations on protein stability with uncertainty quantification
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175072/1/pro4467_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175072/2/pro4467.pdf
dc.identifier.doi10.1002/pro.4467
dc.identifier.sourceProtein Science
dc.identifier.citedreferenceXavier JS, Nguyen T, Karmarkar M, et al. ThermoMutDB: A thermodynamic database for missense mutations. Nucleic Acids Res. 2021; 49 ( D1 ): D475 – D479.
dc.identifier.citedreferenceChen C, Lin M, Liao C, Chang H, Chu Y. iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol. 2020; 18: 622 – 630.
dc.identifier.citedreferenceChen Y, Lu H, Zhang N, Zhu Z, Wang S, Li M. PremPS: Predicting the impact of missense mutations on protein stability. PLoS Comput Biol. 2020; 16 ( 12 ): e1008543.
dc.identifier.citedreferenceMontanucci L, Savojardo C, Martelli PL, Casadio R, Fariselli P. On the biases in predictions of protein stability changes upon variations: The INPS test case. Bioinformatics. 2019; 35 ( 14 ): 2525 – 2527.
dc.identifier.citedreferenceFang J. A critical review of five machine learning-based algorithms for predicting protein stability changes upon mutation. Brief Bioinform. 2020; 21 ( 4 ): 1285 – 1292.
dc.identifier.citedreferencePucci F, Schwersensky M, Rooman M. Artificial intelligence challenges for predicting the impact of mutations on protein stability. Curr Opin Struct Biol. 2022; 72: 161 – 168.
dc.identifier.citedreferenceLi B, Yang YT, Capra JA, Gerstein MB. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks. PLoS Comput Biol. 2020; 16 ( 11 ): e1008291.
dc.identifier.citedreferenceBenevenuta S, Pancotti C, Fariselli P, Birolo G, Sanavia T. An antisymmetric neural network to predict free energy changes in protein variants. J Phys D Appl Phys. 2021; 54 ( 24 ): 245403.
dc.identifier.citedreferenceCao H, Wang J, He L, Qi Y, Zhang JZ. DeepDDG: Predicting the stability change of protein point mutations using neural networks. J Chem Inf Model. 2019; 59 ( 4 ): 1508 – 1514.
dc.identifier.citedreferenceMontanucci L, Capriotti E, Frank Y, Ben-Tal N, Fariselli P. DDGun: An untrained method for the prediction of protein stability changes upon single and multiple point variations. BMC Bioinform. 2019; 20 ( S14 ): 335.
dc.identifier.citedreferenceLeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521 ( 7553 ): 436 – 444.
dc.identifier.citedreferenceNisthal A, Wang CY, Ary ML, Mayo SL. Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. Proc Natl Acad Sci. 2019; 116 ( 33 ): 16367 – 16377.
dc.identifier.citedreferenceBronstein M, Bruna J, Lecun Y, Szlam A, Vandergheynst P. Geometric deep learning: Going beyond Euclidean data. IEEE Signal Proc Mag. 2016; 34: 18 – 42.
dc.identifier.citedreferenceKipf T, Welling M. Semi-supervised classification with graph convolutional networks. 2016.
dc.identifier.citedreferenceJing X, Xu J. Fast and effective protein model refinement using deep graph neural networks. Nat Comput Sci. 2021; 1 ( 7 ): 462 – 469.
dc.identifier.citedreferenceLai B, Xu J. Accurate protein function prediction via graph attention networks with predicted structure information. Brief Bioinform. 2021; 23 ( 1 ): bbab502.
dc.identifier.citedreferenceCaldararu O, Mehra R, Blundell TL, Kepp KP. Systematic investigation of the data set dependency of protein stability predictors. J Chem Inf Model. 2020; 60 ( 10 ): 4772 – 4784.
dc.identifier.citedreferenceGhahramani Z. Probabilistic machine learning and artificial intelligence. Nature. 2015; 521 ( 7553 ): 452 – 459.
dc.identifier.citedreferenceKim Q, Ko J, Kim S, Jhe W. Bayesian neural network with pretrained protein embedding enhances prediction accuracy of drug-protein interaction. Bioinformatics. 2021; 37: 3428 – 3435.
dc.identifier.citedreferenceMontanucci L, Martelli PL, Ben-Tal N, Fariselli P. A natural upper bound to the accuracy of predicting protein stability changes upon mutations. Bioinformatics. 2019; 35: 1513 – 1517.
dc.identifier.citedreferenceGal Y, Hron J, Kendall A. Concrete dropout. arXiv preprint arXiv:1705.07832v1. 2017.
dc.identifier.citedreferencePancotti C, Benevenuta S, Birolo G, et al. Predicting protein stability changes upon single-point mutation: A thorough comparison of the available tools on a new dataset. Brief Bioinform. 2022; 23: bbab555.
dc.identifier.citedreferenceOrdway GA, Garry DJ. Myoglobin: An essential hemoprotein in striated muscle. J Exp Biol. 2004; 207 ( 20 ): 3441 – 3446.
dc.identifier.citedreferencePucci F, Bernaerts KV, Kwasigroch JM, Rooman M. Quantification of biases in predictions of protein stability changes upon mutations. Bioinformatics. 2018; 34 ( 21 ): 3659 – 3665.
dc.identifier.citedreferenceGapsys V, Michielssens S, Seeliger D, de Groot BL. Accurate and rigorous prediction of the changes in protein free energies in a large-scale mutation scan. Angew Chem Int Ed. 2016; 55 ( 26 ): 7364 – 7368.
dc.identifier.citedreferenceWan S, Kumar D, Ilyin V, et al. The effect of protein mutations on drug binding suggests ensuing personalised drug selection. Sci Rep. 2021; 11 ( 1 ): 13452.
dc.identifier.citedreferenceHao G, Yang G, Zhan C. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem. Drug Discov Today. 2012; 17 ( 19 ): 1121 – 1126.
dc.identifier.citedreferencePires DEV, Ascher DB, Blundell TL. DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014; 42: 314 – 319.
dc.identifier.citedreferenceCapriotti E, Fariselli P, Casadio R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005; 33: 306 – 310.
dc.identifier.citedreferenceFariselli P, Martelli PL, Savojardo C, Casadio R. INPS: Predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics. 2015; 31 ( 17 ): 2816 – 2821.
dc.identifier.citedreferenceYang Y, Ding X, Zhu G, Niroula A, Lv Q, Vihinen M. ProTstab—Predictor for cellular protein stability. BMC Genomics. 2019; 20 ( 1 ): 1 – 9.
dc.identifier.citedreferenceWitvliet DK, Strokach A, Giraldo-Forero AF, Teyra J, Colak R, Kim PM. ELASPIC web-server: Proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics. 2016; 32 ( 10 ): 1589 – 1591.
dc.identifier.citedreferenceQuan L, Lv Q, Zhang Y. STRUM: Structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics. 2016; 32 ( 19 ): 2936 – 2946.
dc.identifier.citedreferenceDehouck Y, Kwasigroch JM, Gilis D, Rooman M. PoPMuSiC 2.1: A web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinform. 2011; 12 ( 1 ): 151.
dc.identifier.citedreferenceCapriotti E, Fariselli P, Casadio R. A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics. 2004; 20 ( 1 ): 63 – 68.
dc.identifier.citedreferencePires DEV, Ascher DB, Blundell TL. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics. 2014; 30 ( 3 ): 335 – 342.
dc.identifier.citedreferenceLaimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P. MAESTRO—Multi agent stability prediction upon point mutations. BMC Bioinform. 2015; 16 ( 1 ): 116.
dc.identifier.citedreferenceRodrigues CHM, Pires DEV, Ascher DB. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018; 46: W350 – W355.
dc.identifier.citedreferencePandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res. 2017; 45 ( W1 ): W229 – W235.
dc.identifier.citedreferenceGiollo M, Martin AJ, Walsh I, Ferrari C, Tosatto SC. NeEMO: A method using residue interaction networks to improve prediction of protein stability upon mutation. BMC Genomics. 2014; 15 ( S4 ): 1 – 11.
dc.identifier.citedreferenceRodrigues CHM, Pires DEV, Ascher DB. DynaMut2: Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021; 30 ( 1 ): 60 – 69.
dc.identifier.citedreferenceCang Z, Wei G. Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology. Bioinformatics. 2017; 33 ( 22 ): 3549 – 3557.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.