Show simple item record

Pediatric burden and seasonality of human metapneumovirus over 5 years in Managua, Nicaragua

dc.contributor.authorHacker, Kathryn
dc.contributor.authorKuan, Guillermina
dc.contributor.authorVydiswaran, Nivea
dc.contributor.authorChowell-Puente, Gerardo
dc.contributor.authorPatel, Mayuri
dc.contributor.authorSanchez, Nery
dc.contributor.authorLopez, Roger
dc.contributor.authorOjeda, Sergio
dc.contributor.authorLopez, Brenda
dc.contributor.authorMousa, Jarrod
dc.contributor.authorMaier, Hannah E.
dc.contributor.authorBalmaseda, Angel
dc.contributor.authorGordon, Aubree
dc.date.accessioned2022-11-09T21:17:16Z
dc.date.available2023-12-09 16:17:15en
dc.date.available2022-11-09T21:17:16Z
dc.date.issued2022-11
dc.identifier.citationHacker, Kathryn; Kuan, Guillermina; Vydiswaran, Nivea; Chowell-Puente, Gerardo ; Patel, Mayuri; Sanchez, Nery; Lopez, Roger; Ojeda, Sergio; Lopez, Brenda; Mousa, Jarrod; Maier, Hannah E.; Balmaseda, Angel; Gordon, Aubree (2022). "Pediatric burden and seasonality of human metapneumovirus over 5 years in Managua, Nicaragua." Influenza and Other Respiratory Viruses 16(6): 1112-1121.
dc.identifier.issn1750-2640
dc.identifier.issn1750-2659
dc.identifier.urihttps://hdl.handle.net/2027.42/175073
dc.description.abstractBackgroundHuman metapneumovirus (hMPV) is an important cause of pediatric respiratory infection. We leveraged the Nicaraguan Pediatric Influenza Cohort Study (NPICS) to assess the burden and seasonality of symptomatic hMPV infection in children.MethodsNPICS is an ongoing prospective study of children in Managua, Nicaragua. We assessed children for hMPV infection via real-time reverse-transcription polymerase chain reaction (RT-PCR). We used classical additive decomposition analysis to assess the temporal trends, and generalized growth models (GGMs) were used to estimate effective reproduction numbers.ResultsFrom 2011 to 2016, there were 564 hMPV symptomatic infections, yielding an incidence rate of 5.74 cases per 100 person-years (95% CI 5.3, 6.2). Children experienced 3509 acute lower respiratory infections (ALRIs), of which 160 (4.6%) were associated with hMPV infection. Children under the age of one had 55% of all symptomatic hMPV infections (62/112) develop into hMPV-associated ALRIs and were five times as likely as children over one to have an hMPV-associated ALRI (rate ratio 5.5 95% CI 4.1, 7.4 p < 0.001). Additionally, symptomatic reinfection with hMPV was common. In total, 87 (15%) of all observed symptomatic infections were detected reinfections. The seasonality of symptomatic hMPV outbreaks varied considerably. From 2011 to 2016, four epidemic periods were observed, following a biennial seasonal pattern. The mean ascending phase of the epidemic periods were 7.7 weeks, with an overall mean estimated reproductive number of 1.2 (95% CI 1.1, 1.4).ConclusionsSymptomatic hMPV infection was associated with substantial burden among children in the first year of life. Timing and frequency of symptomatic hMPV incidence followed biennial patterns.
dc.publisherCDC Influenza Division
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrespiratory infection
dc.subject.otherseasonality
dc.subject.othercommunity-based
dc.subject.otherhuman metapneumovirus
dc.subject.otherALRI
dc.titlePediatric burden and seasonality of human metapneumovirus over 5 years in Managua, Nicaragua
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175073/1/irv13034.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175073/2/irv13034_am.pdf
dc.identifier.doi10.1111/irv.13034
dc.identifier.sourceInfluenza and Other Respiratory Viruses
dc.identifier.citedreferenceOketch JW, Kamau E, Otieno GP, Otieno JR, Agoti CN, Nokes DJ. Human metapneumovirus prevalence and patterns of subgroup persistence identified through surveillance of pediatric pneumonia hospital admissions in coastal Kenya, 2007–2016. BMC Infect Dis. 2019; 19 ( 1 ): 757. doi: 10.1186/s12879-019-4381-9
dc.identifier.citedreferenceMakuch RW. Adjusted survival curve estimation using covariates. J Chronic Dis. 1982; 35 ( 6 ): 437 - 443. doi: 10.1016/0021-9681(82)90058-3
dc.identifier.citedreferenceR Development Core Team. R: a language and environment for statistical computing. R Foundation for statistical Computing; 2010 http://www.R-project.org
dc.identifier.citedreferenceHyndman R, Athanasopoulos G, Bergmeir C, et al. Forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 8.15.; 2008. https://pkg.robjhyndman.com/forecast/
dc.identifier.citedreferenceChowell G, Viboud C, Simonsen L, Moghadas SM. Characterizing the reproduction number of epidemics with early subexponential growth dynamics. J R Soc Interface. 2016; 13 ( 123 ): 20160659. doi: 10.1098/rsif.2016.0659
dc.identifier.citedreferenceMatsuzaki Y, Itagaki T, Ikeda T, Aoki Y, Abiko C, Mizuta K. Human metapneumovirus infection among family members. Epidemiol Infect. 2013; 141 ( 4 ): 827 - 832. doi: 10.1017/S095026881200129X
dc.identifier.citedreferenceVink MA, Bootsma MCJ, Wallinga J. Serial intervals of respiratory infectious diseases: a systematic review and analysis. Am J Epidemiol. 2014; 180 ( 9 ): 865 - 875. doi: 10.1093/aje/kwu209
dc.identifier.citedreferenceCarneiro BM, Yokosawa J, Arbiza J, et al. Detection of all four human metapneumovirus subtypes in nasopharyngeal specimens from children with respiratory disease in Uberl-ndia, Brazil. J Med Virol. 2009; 81 ( 10 ): 1814 - 1818. doi: 10.1002/jmv.21555
dc.identifier.citedreferenceRodriguez PE, Frutos MC, Adamo MP, et al. Human metapneumovirus: epidemiology and genotype diversity in children and adult patients with respiratory infection in Córdoba, Argentina. PLoS ONE. 2020; 15 ( 12 ): e0244093. doi: 10.1371/journal.pone.0244093
dc.identifier.citedreferenceCuevas LE, Ben Nasser AM, Dove W, Gurgel RQ, Greensill J, Hart CA. Human metapneumovirus and respiratory syncytial virus, Brazil. Emerg Infect Dis. 2003; 9 ( 12 ): 1626 - 1628. doi: 10.3201/eid0912.030522
dc.identifier.citedreferenceDiaz J, Morales-Romero J, Pérez-Gil G, et al. Viral coinfection in acute respiratory infection in Mexican children treated by the emergency service: a cross-sectional study. Ital J Pediatr. 2015; 41 ( 1 ): 33. doi: 10.1186/s13052-015-0133-7
dc.identifier.citedreferenceEvelyn O, Jaime FS, David M, Lorena A, Jenifer A, Oscar G. Prevalence, clinical outcomes and rainfall association of acute respiratory infection by human metapneumovirus in children in Bogotá, Colombia. BMC Pediatr. 2019; 19 ( 1 ): 345. doi: 10.1186/s12887-019-1734-x
dc.identifier.citedreferenceCaini S, de Mora D, Olmedo M, et al. The epidemiology and severity of respiratory viral infections in a tropical country: Ecuador, 2009–2016. J Infect Public Health. 2019; 12 ( 3 ): 357 - 363. doi: 10.1016/j.jiph.2018.12.003
dc.identifier.citedreferenceMcCracken JP, Arvelo W, Ortíz J, et al. Comparative epidemiology of human metapneumovirus- and respiratory syncytial virus-associated hospitalizations in Guatemala. Influenza Other Respi Viruses. 2014; 8 ( 4 ): 414 - 421. doi: 10.1111/irv.12251
dc.identifier.citedreferenceChow WZ, Chan YF, Oong XY, et al. Genetic diversity, seasonality and transmission network of human metapneumovirus: identification of a unique sub-lineage of the fusion and attachment genes. Sci Rep. 2016; 6 ( 1 ): 27730. doi: 10.1038/srep27730
dc.identifier.citedreferenceWilliams JV, Harris PA, Tollefson SJ, et al. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med. 2004; 350 ( 5 ): 443 - 450. doi: 10.1056/NEJMoa025472
dc.identifier.citedreferenceWraith S, Balmaseda A, Carrillo FAB, et al. Homotypic protection against influenza in a pediatric cohort in Managua, Nicaragua. Nat Commun. 2022; 13 ( 1 ): 1190. doi: 10.1038/s41467-022-28858-9
dc.identifier.citedreferenceArevalo P, McLean HQ, Belongia EA, Cobey S. Earliest infections predict the age distribution of seasonal influenza A cases. Cooper BS, Ferguson NM, Cooper BS, Baguelin M, eds. Elife. 2020; 9: e50060. doi: 10.7554/eLife.50060
dc.identifier.citedreferenceRussell CD, Unger SA, Walton M, Schwarze J. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 2017; 30 ( 2 ): 481 - 502. doi: 10.1128/CMR.00090-16
dc.identifier.citedreferenceNandhini G, Sujatha S, Jain N, et al. Prevalence of human metapneumovirus infection among patients with influenza-like illness: report from a tertiary care centre, Southern India. Indian J Med Microbiol. 2016; 34 ( 1 ): 27 - 32. doi: 10.4103/0255-0857.174117
dc.identifier.citedreferenceWang Y, Chen Z, Yan YD, et al. Seasonal distribution and epidemiological characteristics of human metapneumovirus infections in pediatric inpatients in Southeast China. Arch Virol. 2013; 158 ( 2 ): 417 - 424. doi: 10.1007/s00705-012-1492-7
dc.identifier.citedreferenceKim HR, Cho AR, Lee MK, Yun SW, Kim TH. Genotype variability and clinical features of human metapneumovirus isolated from Korean children, 2007 to 2010. J Mol Diagn. 2012; 14 ( 1 ): 61 - 64. doi: 10.1016/j.jmoldx.2011.09.004
dc.identifier.citedreferenceGrunberg M, Sno R, Adhin MR. Epidemiology of respiratory viruses in patients with severe acute respiratory infections and influenza-like illness in Suriname. Influenza Other Respi Viruses. 2021; 15 ( 1 ): 72 - 80. doi: 10.1111/irv.12791
dc.identifier.citedreferenceApostoli P, Zicari S, Presti AL, et al. Human metapneumovirus-associated hospital admissions over five consecutive epidemic seasons: evidence for alternating circulation of different genotypes. J Med Virol. 2012; 84 ( 3 ): 511 - 516. doi: 10.1002/jmv.23213
dc.identifier.citedreferenceMatsuzaki Y, Itagaki T, Abiko C, Aoki Y, Suto A, Mizuta K. Clinical impact of human metapneumovirus genotypes and genotype-specific seroprevalence in Yamagata, Japan. J Med Virol. 2008; 80 ( 6 ): 1084 - 1089. doi: 10.1002/jmv.21194
dc.identifier.citedreferenceAberle SW, Aberle JH, Sandhofer MJ, Pracher E, Popow-Kraupp T. Biennial spring activity of human metapneumovirus in Austria. Pediatr Infect Dis J. 2008; 27 ( 12 ): 1065 - 1068. doi: 10.1097/INF.0b013e31817ef4fd
dc.identifier.citedreferenceEarn DJD, Rohani P, Bolker BM, Grenfell BT. A simple model for complex dynamical transitions in epidemics. Science. 2000; 287 ( 5453 ): 667 - 670. doi: 10.1126/science.287.5453.667
dc.identifier.citedreferenceKeeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton University Press; 2008. doi: 10.2307/j.ctvcm4gk0.
dc.identifier.citedreferenceAgapov E, Sumino KC, Gaudreault-Keener M, Storch GA, Holtzman MJ. Genetic variability of human metapneumovirus infection: evidence of a shift in viral genotype without a change in illness. J Infect Dis. 2006; 193 ( 3 ): 396 - 403. doi: 10.1086/499310
dc.identifier.citedreferenceArnott A, Vong S, Sek M, et al. Genetic variability of human metapneumovirus amongst an all ages population in Cambodia between 2007 and 2009. Infect Genet Evol. 2013; 15: 43 - 52. doi: 10.1016/j.meegid.2011.01.016
dc.identifier.citedreferenceLudewick HP, Abed Y, van Niekerk N, Boivin G, Klugman KP, Madhi SA. Human Metapneumovirus genetic variability, South Africa. Emerg Infect Dis. 2005; 11 ( 7 ): 1074 - 1078. doi: 10.3201/eid1107.050500
dc.identifier.citedreferencePollett S, Trovão NS, Tan Y, et al. The transmission dynamics and diversity of human metapneumovirus in Peru. Influenza Other Respi Viruses. 2018; 12 ( 4 ): 508 - 513. doi: 10.1111/irv.12537
dc.identifier.citedreferenceLegrand L, Vabret A, Dina J, et al. Epidemiological and phylogenic study of human metapneumovirus infections during three consecutive outbreaks in Normandy, France. J Med Virol. 2011; 83 ( 3 ): 517 - 524. doi: 10.1002/jmv.22002
dc.identifier.citedreferenceSloots TP, Mackay IM, Bialasiewicz S, et al. Human metapneumovirus, Australia, 2001–2004. Emerg Infect Dis. 2006; 12 ( 8 ): 1263 - 1266. doi: 10.3201/eid1208.051239
dc.identifier.citedreferenceMullins JA, Erdman DD, Weinberg GA, et al. Human metapneumovirus infection among children hospitalized with acute respiratory illness. Emerg Infect Dis. 2004; 10 ( 4 ): 700 - 705. doi: 10.3201/eid1004.030555
dc.identifier.citedreferenceWilliams JV, Edwards KM, Weinberg GA, et al. Population-based incidence of human metapneumovirus infection among hospitalized children. J Infect Dis. 2010; 201 ( 12 ): 1890 - 1898. doi: 10.1086/652782
dc.identifier.citedreferenceRamocha LM, Mutsaerts EAML, Verwey C, Madhi S. Epidemiology of human metapneumovirus-associated lower respiratory tract infections in African children: systematic review and meta-analysis. Pediatr Infect Dis J. 2021; 40 ( 5 ): 479 - 485. doi: 10.1097/INF.0000000000003041
dc.identifier.citedreferenceWang X, Li Y, Deloria-Knoll M, et al. Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: a systematic review and modelling study. Lancet Glob Health. 2021; 9 ( 1 ): e33 - e43. doi: 10.1016/S2214-109X(20)30393-4
dc.identifier.citedreferenceDivarathna MVM, Rafeek RAM, Noordeen F. A review on epidemiology and impact of human metapneumovirus infections in children using TIAB search strategy on PubMed and PubMed Central articles. Rev Med Virol. 2020; 30 ( 1 ): e2090. doi: 10.1002/rmv.2090
dc.identifier.citedreferenceO’Brien KL, Baggett HC, Brooks WA, et al. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. The Lancet. 2019; 394 ( 10200 ): 757 - 779. doi: 10.1016/S0140-6736(19)30721-4
dc.identifier.citedreferencevan den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001; 7 ( 6 ): 719 - 724. doi: 10.1038/89098
dc.identifier.citedreferenceYi L, Zou L, Peng J, et al. Epidemiology, evolution and transmission of human metapneumovirus in Guangzhou China, 2013–2017. Sci Rep. 2019; 9 ( 1 ): 14022. doi: 10.1038/s41598-019-50340-8
dc.identifier.citedreferenceHuck B, Scharf G, Neumann-Haefelin D, Puppe W, Weigl J, Falcone V. Novel human metapneumovirus sublineage. Emerg Infect Dis. 2006; 12 ( 1 ): 147 - 150. doi: 10.3201/eid1201.050772
dc.identifier.citedreferenceBiacchesi S, Skiadopoulos MH, Boivin G, et al. Genetic diversity between human metapneumovirus subgroups. Virology. 2003; 315 ( 1 ): 1 - 9. doi: 10.1016/S0042-6822(03)00528-2
dc.identifier.citedreferenceSchildgen V, van den Hoogen B, Fouchier R, et al. Human metapneumovirus: lessons learned over the first decade. Clin Microbiol Rev. 2011; 24 ( 4 ): 734 - 754. doi: 10.1128/CMR.00015-11
dc.identifier.citedreferenceWilliams JV, Wang CK, Yang CF, et al. The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis. 2006; 193 ( 3 ): 387 - 395. doi: 10.1086/499274
dc.identifier.citedreferenceEdwards KM, Zhu Y, Griffin MR, et al. Burden of human metapneumovirus infection in young children. N Engl J Med. 2013; 368 ( 7 ): 633 - 643. doi: 10.1056/NEJMoa1204630
dc.identifier.citedreferencePavlin JA, Hickey AC, Ulbrandt N, et al. Human metapneumovirus reinfection among children in Thailand determined by an enzyme-linked immunosorbent assay using purified soluble fusion protein. J Infect Dis. 2008; 198 ( 6 ): 836 - 842. doi: 10.1086/591186
dc.identifier.citedreferenceLeung J, Esper F, Weibel C, Kahn JS. Seroepidemiology of human metapneumovirus (hMPV) on the basis of a novel enzyme-linked immunosorbent assay utilizing hMPV fusion protein expressed in recombinant vesicular stomatitis virus. J Clin Microbiol. 2005; 43 ( 3 ): 1213 - 1219. doi: 10.1128/JCM.43.3.1213-1219.2005
dc.identifier.citedreferenceLim YK, Kweon OJ, Kim HR, Kim T-H, Lee M-K. Clinical features, epidemiology, and climatic impact of genotype-specific human metapneumovirus infections: long-term surveillance of hospitalized patients in South Korea. Clin Infect Dis. 2019; 70 ( 12 ): 2683 - 2694. doi: 10.1093/cid/ciz697
dc.identifier.citedreferenceCéspedes PF, Palavecino CE, Kalergis AM, Bueno SM. Modulation of host immunity by the human metapneumovirus. Clin Microbiol Rev. 2016; 29 ( 4 ): 795 - 818. doi: 10.1128/CMR.00081-15
dc.identifier.citedreferenceWolf DG, Zakay-Rones Z, Fadeela A, Greenberg D, Dagan R. High seroprevalence of human metapneumovirus among young children in Israel. J Infect Dis. 2003; 188 ( 12 ): 1865 - 1867. doi: 10.1086/380100
dc.identifier.citedreferenceOkamoto M, Sugawara K, Takashita E, et al. Longitudinal course of human metapneumovirus antibody titers and reinfection in healthy adults. J Med Virol. 2010; 82 ( 12 ): 2092 - 2096. doi: 10.1002/jmv.21920
dc.identifier.citedreferenceMaier HE, Kuan G, Gresh L, et al. The Nicaraguan Pediatric Influenza Cohort Study, 2011–2019: influenza incidence, seasonality, and transmission. Clin Infect Dis. Published online. 2022; ciac420. doi: 10.1093/cid/ciac420
dc.identifier.citedreferenceGordon A, Kuan G, Aviles W, et al. The Nicaraguan pediatric influenza cohort study: design, methods, use of technology, and compliance. BMC Infect Dis. 2015; 15 ( 1 ): 504. doi: 10.1186/s12879-015-1256-6
dc.identifier.citedreferenceCenters for Disease Control and Prevention. Real-time RT-PCR assays for non-influenza respiratory viruses. CDC Influenza Division; 2010.
dc.identifier.citedreferenceDenz R, Klaaßen-Mielke R, Timmesfeld N. c. arXiv preprint arXiv:220310002. Published online 2022.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.