Show simple item record

Pregnancy imparts distinct systemic adaptive immune function

dc.contributor.authorDemery-Poulos, Catherine
dc.contributor.authorRomero, Roberto
dc.contributor.authorXu, Yi
dc.contributor.authorArenas-Hernandez, Marcia
dc.contributor.authorMiller, Derek
dc.contributor.authorTao, Li
dc.contributor.authorGalaz, Jose
dc.contributor.authorFarias-Jofre, Marcelo
dc.contributor.authorBhatti, Gaurav
dc.contributor.authorGarcia-Flores, Valeria
dc.contributor.authorSeyerle, Megan
dc.contributor.authorTarca, Adi L.
dc.contributor.authorGomez-Lopez, Nardhy
dc.date.accessioned2022-11-09T21:19:52Z
dc.date.available2023-12-09 16:19:51en
dc.date.available2022-11-09T21:19:52Z
dc.date.issued2022-11
dc.identifier.citationDemery-Poulos, Catherine ; Romero, Roberto; Xu, Yi; Arenas-Hernandez, Marcia ; Miller, Derek; Tao, Li; Galaz, Jose; Farias-Jofre, Marcelo ; Bhatti, Gaurav; Garcia-Flores, Valeria ; Seyerle, Megan; Tarca, Adi L.; Gomez-Lopez, Nardhy (2022). "Pregnancy imparts distinct systemic adaptive immune function." American Journal of Reproductive Immunology 88(5): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/175120
dc.description.abstractProblemPregnancy represents a state of systemic immune activation that is primarily driven by alterations in circulating innate immune cells. Recent studies have suggested that cellular adaptive immune components, T cells and B cells, also undergo changes throughout gestation. However, the phenotypes and functions of such adaptive immune cells are poorly understood. Herein, we utilized high-dimensional flow cytometry and functional assays to characterize T-cell and B-cell responses in pregnant and non-pregnant women.MethodsPeripheral blood mononuclear cells from pregnant (n = 20) and non-pregnant (n = 25) women were used for phenotyping of T-cell and B-cell subsets. T-cell proliferation and B-cell activation were assessed by flow cytometry after in vitro stimulation, and lymphocyte cytotoxicity was evaluated by using a cell-based assay. Statistical comparisons were performed with linear mixed-effects models.ResultsPregnancy was associated with modestly enhanced basal activation of peripheral CD4+ T cells. Both CD4+ and CD8+ T cells from pregnant women showed increased activation-induced proliferation; yet, a reduced proportion of these cells expressed activation markers compared to non-pregnant women. There were no differences in peripheral lymphocyte cytotoxicity between study groups. A greater proportion of B cells from pregnant women displayed memory-like and activated phenotypes, and such cells exhibited higher activation following stimulation.ConclusionMaternal circulating T cells and B cells display distinct responses during pregnancy. The former may reflect the unique capacity of T cells to respond to potential threats without undergoing aberrant activation, thereby preventing systemic inflammatory responses that can lead to adverse perinatal consequences.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheradaptive immunity
dc.subject.otherB cell
dc.subject.otherflow cytometry
dc.subject.othermaternal circulation
dc.subject.otherT cell
dc.subject.othercytotoxicity
dc.titlePregnancy imparts distinct systemic adaptive immune function
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175120/1/aji13606.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175120/2/aji13606_am.pdf
dc.identifier.doi10.1111/aji.13606
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceShepard MT, Bonney EA. PD-1 regulates T cell proliferation in a tissue and subset-specific manner during normal mouse pregnancy. Immunol Invest. 2013; 42 ( 5 ): 385 - 408.
dc.identifier.citedreferenceKrechetova LV, Vtorushina VV, Nikolaeva MA, et al. Expression of Early Activation Marker CD69 on Peripheral Blood Lymphocytes from Pregnant Women after First Trimester Alloimmunization. Bull Exp Biol Med. 2016; 161 ( 4 ): 529 - 532.
dc.identifier.citedreferenceSchowengerdt KO, Fricker FJ, Bahjat KS, Kuntz ST. Increased expression of the lymphocyte early activation marker CD69 in peripheral blood correlates with histologic evidence of cardiac allograft rejection. Transplantation. 2000; 69 ( 10 ): 2102 - 2107.
dc.identifier.citedreferencePosselt AM, Vincenti F, Bedolli M, Lantz M, Roberts JP, Hirose R. CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation. 2003; 76 ( 1 ): 190 - 195.
dc.identifier.citedreferenceKurachi M. CD8(+) T cell exhaustion. Semin Immunopathol. 2019; 41 ( 3 ): 327 - 337.
dc.identifier.citedreferenceSarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J Exp Med. 2008; 205 ( 3 ): 625 - 640.
dc.identifier.citedreferenceGolubovskaya V, Wu L. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. Cancers (Basel). 2016; 8 ( 3 ).
dc.identifier.citedreferenceVerma K, Ogonek J, Varanasi PR, et al. Human CD8+ CD57- TEMRA cells: Too young to be called “old ”. PLoS One. 2017; 12 ( 5 ): e0177405.
dc.identifier.citedreferenceMilner JJ, Nguyen H, Omilusik K, et al. Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proc Natl Acad Sci U S A. 2020; 117 ( 41 ): 25667 - 25678.
dc.identifier.citedreferenceForbes RL, Wark PA, Murphy VE, Gibson PG. Pregnant women have attenuated innate interferon responses to 2009 pandemic influenza A virus subtype H1N1. J Infect Dis. 2012; 206 ( 5 ): 646 - 653.
dc.identifier.citedreferenceVanders RL, Gibson PG, Murphy VE, Wark PA. Plasmacytoid dendritic cells and CD8 T cells from pregnant women show altered phenotype and function following H1N1/09 infection. J Infect Dis. 2013; 208 ( 7 ): 1062 - 1070.
dc.identifier.citedreferenceGarcia-Flores V, Romero R, Xu Y, et al. Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat Commun. 2022; 13 ( 1 ): 320.
dc.identifier.citedreferenceSiklos P, Nemeth-Csoka A, Bartalits L, Ungar L, Hercz P, Garam T. Cytotoxic activity of peripheral mononuclear cells in normal pregnancy. Haematologia (Budap). 1985; 18 ( 4 ): 259 - 264.
dc.identifier.citedreferenceArancia G, Malorni W, Donelli G. Cellular mechanisms of lymphocyte-mediated lysis of tumor cells. Ann Ist Super Sanita. 1990; 26 ( 3-4 ): 369 - 384.
dc.identifier.citedreferenceKuhnert M, Strohmeier R, Stegmuller M, Halberstadt E. Changes in lymphocyte subsets during normal pregnancy. Eur J Obstet Gynecol Reprod Biol. 1998; 76 ( 2 ): 147 - 151.
dc.identifier.citedreferenceJamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity. 2002; 17 ( 1 ): 19 - 29.
dc.identifier.citedreferenceBauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999; 285 ( 5428 ): 727 - 729.
dc.identifier.citedreferenceFettke F, Schumacher A, Costa SD, Zenclussen AC. B cells: the old new players in reproductive immunology. Front Immunol. 2014; 5: 285.
dc.identifier.citedreferenceZiegler KB, Muzzio DO, Matzner F, et al. Human pregnancy is accompanied by modifications in B cell development and immunoglobulin profile. J Reprod Immunol. 2018; 129: 40 - 47.
dc.identifier.citedreferenceChaouat G, Kolb JP. Immunoactive products of murine placenta. II.–Afferent suppression of maternal cell-mediated immunity by supernatants from short-term cultures of murine trophoblast-enriched cell suspensions. Ann Immunol (Paris). 1984; 135C ( 2 ): 205 - 218.
dc.identifier.citedreferencePower DA, Catto GR, Mason RJ, et al. The fetus as an allograft: evidence for protective antibodies to HLA-linked paternal antigens. Lancet. 1983; 2 ( 8352 ): 701 - 704.
dc.identifier.citedreferenceBeard RW, Braude P, Mowbray JF, Underwood JL. Protective antibodies and spontaneous abortion. Lancet. 1983; 2 ( 8358 ): 1090.
dc.identifier.citedreferenceBeer AE, Semprini AE, Zhu XY, Quebbeman JF. Pregnancy outcome in human couples with recurrent spontaneous abortions: HLA antigen profiles; HLA antigen sharing; female serum MLR blocking factors; and paternal leukocyte immunization. Exp Clin Immunogenet. 1985; 2 ( 3 ): 137 - 153.
dc.identifier.citedreferenceAgrawal S, Pandey MK, Pandey A. Prevalence of MLR blocking antibodies before and after immunotherapy. J Hematother Stem Cell Res. 2000; 9 ( 2 ): 257 - 262.
dc.identifier.citedreferenceMargni RA, Paz CB, Cordal ME. Immunochemical behavior of sheep non-precipitating antibodies isolated by immunoadsorption. Immunochemistry. 1976; 13 ( 3 ): 209 - 214.
dc.identifier.citedreferenceSthoeger ZM, Wakai M, Tse DB, et al. Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia. J Exp Med. 1989; 169 ( 1 ): 255 - 268.
dc.identifier.citedreferenceVelasquillo MC, Alcocer-Varela J, Alarcon-Segovia D, Cabiedes J, Sanchez-Guerrero J. Some patients with primary antiphospholipid syndrome have increased circulating CD5+ B cells that correlate with levels of IgM antiphospholipid antibodies. Clin Exp Rheumatol. 1991; 9 ( 5 ): 501 - 505.
dc.identifier.citedreferenceAyres MA, Sulak PJ. Pregnancy complicated by antiphospholipid antibodies. South Med J. 1991; 84 ( 2 ): 266 - 269.
dc.identifier.citedreferenceWallukat G, Homuth V, Fischer T, et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest. 1999; 103 ( 7 ): 945 - 952.
dc.identifier.citedreferenceErez O, Romero R, Espinoza J, et al. The change in concentrations of angiogenic and anti-angiogenic factors in maternal plasma between the first and second trimesters in risk assessment for the subsequent development of preeclampsia and small-for-gestational age. J Matern Fetal Neonatal Med. 2008; 21 ( 5 ): 279 - 287.
dc.identifier.citedreferenceJensen F, Wallukat G, Herse F, et al. CD19+CD5+ cells as indicators of preeclampsia. Hypertension. 2012; 59 ( 4 ): 861 - 868.
dc.identifier.citedreferenceKikuchi Y, Yasue T, Miyake K, Kimoto M, Takatsu K. CD38 ligation induces tyrosine phosphorylation of Bruton tyrosine kinase and enhanced expression of interleukin 5-receptor alpha chain: synergistic effects with interleukin 5. Proc Natl Acad Sci U S A. 1995; 92 ( 25 ): 11814 - 11818.
dc.identifier.citedreferenceLima J, Cambridge G, Vilas-Boas A, Martins C, Borrego LM, Leandro M. Serum markers of B-cell activation in pregnancy during late gestation, delivery, and the postpartum period. Am J Reprod Immunol. 2019; 81 ( 3 ): e13090.
dc.identifier.citedreferenceGomez-Lopez, N., Romero, R., Tao, L., Gershater, M., Leng, Y., Zou, C., Farias-Jofre, M., Galaz, J., Miller, D., Tarca, A. L., Arenas-Hernandez, M., Bhatti, G., Garcia-Flores, V., Liu, Z., Para, R., Kanninen, T., Hadaya, O., Paredes, C., & Xu, Y. (2022). Distinct Cellular Immune Responses to SARS-CoV-2 in Pregnant Women. The Journal of Immunology, 208(8), 1857–1872. https://doi.org/10.4049/jimmunol.2101123
dc.identifier.citedreferenceSacks G, Sargent I, Redman C. Innate immunity in pregnancy. Immunol Today. 2000; 21 ( 4 ): 200 - 201.
dc.identifier.citedreferenceFaas MM, Spaans F, De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Front Immunol. 2014; 5: 298.
dc.identifier.citedreferenceAbu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol. 2020; 11: 575197.
dc.identifier.citedreferenceEfrati P, Presentey B, Margalith M, Rozenszajn L. Leukocytes Of Normal Pregnant Women. Obstet Gynecol. 1964; 23: 429 - 432.
dc.identifier.citedreferenceSacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol. 1998; 179 ( 1 ): 80 - 86.
dc.identifier.citedreferenceKoumandakis E, Koumandaki I, Kaklamani E, Sparos L, Aravantinos D, Trichopoulos D. Enhanced phagocytosis of mononuclear phagocytes in pregnancy. Br J Obstet Gynaecol. 1986; 93 ( 11 ): 1150 - 1154.
dc.identifier.citedreferenceShibuya T, Izuchi K, Kuroiwa A, Okabe N, Shirakawa K. Study on nonspecific immunity in pregnant women: increased chemiluminescence response of peripheral blood phagocytes. Am J Reprod Immunol Microbiol. 1987; 15 ( 1 ): 19 - 23.
dc.identifier.citedreferenceNaccasha N, Gervasi MT, Chaiworapongsa T, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol. 2001; 185 ( 5 ): 1118 - 1123.
dc.identifier.citedreferenceGermain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J Immunol. 2007; 178 ( 9 ): 5949 - 5956.
dc.identifier.citedreferenceZhang J, Shynlova O, Sabra S, Bang A, Briollais L, Lye SJ. Immunophenotyping and activation status of maternal peripheral blood leukocytes during pregnancy and labour, both term and preterm. J Cell Mol Med. 2017; 21 ( 10 ): 2386 - 2402.
dc.identifier.citedreferenceFarias-Jofre M, Romero R, Galaz J, et al. Pregnancy Tailors Endotoxin-Induced Monocyte and Neutrophil Responses in the Maternal Circulation. Inflamm Res. 2022; 71 (5-6): 653 - 668.
dc.identifier.citedreferenceKitzmiller JL, Stoneburner L, Yelenosky PF, Lucas WE. Serum complement in normal pregnancy and pre-eclampsia. Am J Obstet Gynecol. 1973; 117 ( 3 ): 312 - 315.
dc.identifier.citedreferenceBaines MG, Millar KG, Mills P. Studies of complement levels in normal human pregnancy. Obstet Gynecol. 1974; 43 ( 6 ): 806 - 810.
dc.identifier.citedreferenceStirling Y, Woolf L, North WR, Seghatchian MJ, Meade TW. Haemostasis in normal pregnancy. Thromb Haemost. 1984; 52 ( 2 ): 176 - 182.
dc.identifier.citedreferenceHopkinson ND, Powell RJ. Classical complement activation induced by pregnancy: implications for management of connective tissue diseases. J Clin Pathol. 1992; 45 ( 1 ): 66 - 67.
dc.identifier.citedreferenceRichani K, Soto E, Romero R, et al. Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med. 2005; 17 ( 4 ): 239 - 245.
dc.identifier.citedreferenceBlazkova J, Gupta S, Liu Y, et al. Multicenter systems analysis of human blood reveals immature neutrophils in males and during pregnancy. J Immunol. 2017; 198 ( 6 ): 2479 - 2488.
dc.identifier.citedreferenceAghaeepour N, Ganio EA, McIlwain D, et al. An immune clock of human pregnancy. Sci Immunol. 2017; 2 ( 15 ).
dc.identifier.citedreferenceArenas-Hernandez M, Romero R, Xu Y, et al. Effector and activated T cells induce preterm labor and birth that is prevented by treatment with progesterone. J Immunol. 2019; 202 ( 9 ): 2585 - 2608.
dc.identifier.citedreferenceHan X, Ghaemi MS, Ando K, et al. Differential dynamics of the maternal immune system in healthy pregnancy and preeclampsia. Front Immunol. 2019; 10: 1305.
dc.identifier.citedreferencePique-Regi R, Romero R, Tarca AL, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife. 2019; 8.
dc.identifier.citedreferenceStelzer IA, Ghaemi MS, Han X, et al. Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset. Sci Transl Med. 2021; 13 ( 592 ).
dc.identifier.citedreferenceTarca AL, Romero R, Xu Z, et al. Targeted expression profiling by RNA-Seq improves detection of cellular dynamics during pregnancy and identifies a role for T cells in term parturition. Sci Rep. 2019; 9 ( 1 ): 848.
dc.identifier.citedreferenceAghaeepour N, Lehallier B, Baca Q, et al. A proteomic clock of human pregnancy. Am J Obstet Gynecol. 2018; 218 ( 3 ):347 e341-347 e314.
dc.identifier.citedreferenceSaito S, Umekage H, Sakamoto Y, et al. Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol. 1999; 41 ( 5 ): 297 - 306.
dc.identifier.citedreferenceChaiworapongsa T, Gervasi MT, Refuerzo J, et al. Maternal lymphocyte subpopulations (CD45RA+ and CD45RO+) in preeclampsia. Am J Obstet Gynecol. 2002; 187 ( 4 ): 889 - 893.
dc.identifier.citedreferenceDarmochwal-Kolarz D, Saito S, Rolinski J, et al. Activated T lymphocytes in pre-eclampsia. Am J Reprod Immunol. 2007; 58 ( 1 ): 39 - 45.
dc.identifier.citedreferenceSasaki Y, Darmochwal-Kolarz D, Suzuki D, et al. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin Exp Immunol. 2007; 149 ( 1 ): 139 - 145.
dc.identifier.citedreferenceMiller D, Motomura K, Galaz J, et al. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol. 2022; 111 ( 1 ): 237 - 260.
dc.identifier.citedreferenceBhat NM, Mithal A, Bieber MM, Herzenberg LA, Teng NN. Human CD5+ B lymphocytes (B-1 cells) decrease in peripheral blood during pregnancy. J Reprod Immunol. 1995; 28 ( 1 ): 53 - 60.
dc.identifier.citedreferenceLeng Y, Romero R, Xu Y, et al. Are B cells altered in the decidua of women with preterm or term labor? Am J Reprod Immunol. 2019; 81 ( 5 ): e13102.
dc.identifier.citedreferenceWegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993; 14 ( 7 ): 353 - 356.
dc.identifier.citedreferenceLin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol. 1993; 151 ( 9 ): 4562 - 4573.
dc.identifier.citedreferenceTafuri A, Alferink J, Möller P, Hämmerling GJ, Arnold B. T cell awareness of paternal alloantigens during pregnancy. Science. 1995; 270 ( 5236 ): 630 - 633.
dc.identifier.citedreferenceMarzi M, Vigano A, Trabattoni D, et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol. 1996; 106 ( 1 ): 127 - 133.
dc.identifier.citedreferenceEkerfelt C, Matthiesen L, Berg G, Ernerudh J. Th2-deviation of fetus-specific T cells. Immunol Today. 1999; 20 ( 11 ): 534.
dc.identifier.citedreferenceChaouat G, Petitbarat M, Dubanchet S, Rahmati M, Ledee N. Tolerance to the foetal allograft? Am J Reprod Immunol. 2010; 63 ( 6 ): 624 - 636.
dc.identifier.citedreferenceConfavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998; 339 ( 5 ): 285 - 291.
dc.identifier.citedreferenceBuchel E, Van Steenbergen W, Nevens F, Fevery J. Improvement of autoimmune hepatitis during pregnancy followed by flare-up after delivery. Am J Gastroenterol. 2002; 97 ( 12 ): 3160 - 3165.
dc.identifier.citedreferenceLanger-Gould A, Garren H, Slansky A, Ruiz PJ, Steinman L. Late pregnancy suppresses relapses in experimental autoimmune encephalomyelitis: evidence for a suppressive pregnancy-related serum factor. J Immunol. 2002; 169 ( 2 ): 1084 - 1091.
dc.identifier.citedreferenceMcClain MA, Gatson NN, Powell ND, et al. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J Immunol. 2007; 179 ( 12 ): 8146 - 8152.
dc.identifier.citedreferencede Man YA, Dolhain RJ, van de Geijn FE, Willemsen SP, Hazes JM. Disease activity of rheumatoid arthritis during pregnancy: results from a nationwide prospective study. Arthritis Rheum. 2008; 59 ( 9 ): 1241 - 1248.
dc.identifier.citedreferenceGatson NN, Williams JL, Powell ND, et al. Induction of pregnancy during established EAE halts progression of CNS autoimmune injury via pregnancy-specific serum factors. J Neuroimmunol. 2011; 230 ( 1-2 ): 105 - 113.
dc.identifier.citedreferenceEngler JB, Kursawe N, Solano ME, et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc Natl Acad Sci U S A. 2017; 114 ( 2 ): E181 - e190.
dc.identifier.citedreferenceKoetzier SC, Neuteboom RF, Wierenga-Wolf AF, et al. Effector T Helper Cells Are Selectively Controlled During Pregnancy and Related to a Postpartum Relapse in Multiple Sclerosis. Front Immunol. 2021; 12: 642038.
dc.identifier.citedreferenceLockshin MD, Reinitz E, Druzin ML, Murrman M, Estes D. Lupus pregnancy. Case-control prospective study demonstrating absence of lupus exacerbation during or after pregnancy. Am J Med. 1984; 77 ( 5 ): 893 - 898.
dc.identifier.citedreferenceWang SC, Li YH, Piao HL, et al. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy. Cell Death Dis. 2015; 6 ( 5 ): e1738.
dc.identifier.citedreferencevan der Zwan A, Bi K, Norwitz ER, et al. Mixed signature of activation and dysfunction allows human decidual CD8(+) T cells to provide both tolerance and immunity. Proc Natl Acad Sci U S A. 2018; 115 ( 2 ): 385 - 390.
dc.identifier.citedreferenceSlutsky R, Romero R, Xu Y, et al. Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res. 2019; 2019: 3128010.
dc.identifier.citedreferenceDaya S, Rosenthal KL, Clark DA. Immunosuppressor factor(s) produced by decidua-associated suppressor cells: a proposed mechanism for fetal allograft survival. Am J Obstet Gynecol. 1987; 156 ( 2 ): 344 - 350.
dc.identifier.citedreferenceErlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J Clin Invest. 2007; 117 ( 5 ): 1399 - 1411.
dc.identifier.citedreferenceNancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science. 2012; 336 ( 6086 ): 1317 - 1321.
dc.identifier.citedreferenceZenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol. 2005; 166 ( 3 ): 811 - 822.
dc.identifier.citedreferenceDarrasse-Jèze G, Klatzmann D, Charlotte F, Salomon BL, Cohen JL. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol Lett. 2006; 102 ( 1 ): 106 - 109.
dc.identifier.citedreferenceKahn DA, Baltimore D. Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance. Proc Natl Acad Sci U S A. 2010; 107 ( 20 ): 9299 - 9304.
dc.identifier.citedreferenceShima T, Sasaki Y, Itoh M, et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J Reprod Immunol. 2010; 85 ( 2 ): 121 - 129.
dc.identifier.citedreferenceRowe JH, Ertelt JM, Aguilera MN, Farrar MA, Way SS. Foxp3(+) regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe. 2011; 10 ( 1 ): 54 - 64.
dc.identifier.citedreferenceSamstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012; 150 ( 1 ): 29 - 38.
dc.identifier.citedreferenceSchober L, Radnai D, Schmitt E, Mahnke K, Sohn C, Steinborn A. Term and preterm labor: decreased suppressive activity and changes in composition of the regulatory T-cell pool. Immunol Cell Biol. 2012; 90 ( 10 ): 935 - 944.
dc.identifier.citedreferenceRowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012; 490 ( 7418 ): 102 - 106.
dc.identifier.citedreferenceChen T, Darrasse-Jèze G, Bergot AS, et al. Self-specific memory regulatory T cells protect embryos at implantation in mice. J Immunol. 2013; 191 ( 5 ): 2273 - 2281.
dc.identifier.citedreferenceGomez-Lopez N, Arenas-Hernandez M, Romero R, et al. Regulatory T Cells Play a Role in a Subset of Idiopathic Preterm Labor/Birth and Adverse Neonatal Outcomes. Cell Rep. 2020; 32 ( 1 ): 107874.
dc.identifier.citedreferenceDiao L, Hierweger AM, Wieczorek A, Arck PC, Thiele K. Disruption of Glucocorticoid Action on CD11c(+) Dendritic Cells Favors the Generation of CD4(+) Regulatory T Cells and Improves Fetal Development in Mice. Front Immunol. 2021; 12: 729742.
dc.identifier.citedreferenceGomez-Lopez N, Romero R, Hassan SS, et al. The Cellular Transcriptome in the Maternal Circulation During Normal Pregnancy: A Longitudinal Study. Front Immunol. 2019; 10: 2863.
dc.identifier.citedreferenceMuzzio D, Zenclussen AC, Jensen F. The role of B cells in pregnancy: the good and the bad. Am J Reprod Immunol. 2013; 69 ( 4 ): 408 - 412.
dc.identifier.citedreferenceBartmann C, Segerer SE, Rieger L, Kapp M, Sutterlin M, Kammerer U. Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol. 2014; 71 ( 2 ): 109 - 119.
dc.identifier.citedreferenceKieffer TEC, Laskewitz A, Scherjon SA, Faas MM, Prins JR. Memory T Cells in Pregnancy. Front Immunol. 2019; 10: 625.
dc.identifier.citedreferenceValeff N, Muzzio DO, Matzner F, et al. B cells acquire a unique and differential transcriptomic profile during pregnancy. Genomics. 2021; 113 ( 4 ): 2614 - 2622.
dc.identifier.citedreferenceGarson D, Dokhelar MC, Wakasugi H, Mishal Z, Tursz T. HLA class-I and class-II antigen expression by human leukemic K562 cells and by Burkitt-K562 hybrids: modulation by differentiation inducers and interferon. Exp Hematol. 1985; 13 ( 9 ): 885 - 890.
dc.identifier.citedreferenceDay NE, Ugai H, Yokoyama KK, Ichiki AT. K-562 cells lack MHC class II expression due to an alternatively spliced CIITA transcript with a truncated coding region. Leuk Res. 2003; 27 ( 11 ): 1027 - 1038.
dc.identifier.citedreferenceTremblay-McLean A, Coenraads S, Kiani Z, Dupuy FP, Bernard NF. Expression of ligands for activating natural killer cell receptors on cell lines commonly used to assess natural killer cell function. BMC Immunol. 2019; 20 ( 1 ): 8.
dc.identifier.citedreferenceBates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015; 67 ( 1 ): 1 – 48.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995; 57: 289 - 300.
dc.identifier.citedreferenceSaito S, Nishikawa K, Morii T, Narita N, Enomoto M, Ichijo M. Expression of activation antigens CD69, HLA-DR, interleukin-2 receptor-alpha (IL-2R alpha) and IL-2R beta on T cells of human decidua at an early stage of pregnancy. Immunology. 1992; 75 ( 4 ): 710 - 712.
dc.identifier.citedreferenceSasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004; 10 ( 5 ): 347 - 353.
dc.identifier.citedreferenceRobertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlström AC, Care AS. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol Reprod. 2009; 80 ( 5 ): 1036 - 1045.
dc.identifier.citedreferenceLiu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH. The role of decidual immune cells on human pregnancy. J Reprod Immunol. 2017; 124: 44 - 53.
dc.identifier.citedreferenceRobertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest. 2018; 128 ( 10 ): 4224 - 4235.
dc.identifier.citedreferenceWang W, Zhao Y, Zhou X, et al. Dynamic changes in regulatory T cells during normal pregnancy, recurrent pregnancy loss, and gestational diabetes. J Reprod Immunol. 2022; 150: 103492.
dc.identifier.citedreferenceHara T, Jung LK, Bjorndahl JM, Fu SM. Human T cell activation. III. Rapid induction of a phosphorylated 28 kD/32 kD disulfide-linked early activation antigen (EA 1) by 12-o-tetradecanoyl phorbol-13-acetate, mitogens, and antigens. J Exp Med. 1986; 164 ( 6 ): 1988 - 2005.
dc.identifier.citedreferenceTesti R, Phillips JH, Lanier LL. T cell activation via Leu-23 (CD69). J Immunol. 1989; 143 ( 4 ): 1123 - 1128.
dc.identifier.citedreferenceIshida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11 ( 11 ): 3887 - 3895.
dc.identifier.citedreferenceFife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008; 224: 166 - 182.
dc.identifier.citedreferenceKeir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26: 677 - 704.
dc.identifier.citedreferenceAgata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996; 8 ( 5 ): 765 - 772.
dc.identifier.citedreferenceDatar I, Sanmamed MF, Wang J, et al. Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human Non-Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis. Clin Cancer Res. 2019; 25 ( 15 ): 4663 - 4673.
dc.identifier.citedreferenceSallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999; 401 ( 6754 ): 708 - 712.
dc.identifier.citedreferenceGeginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood. 2003; 101 ( 11 ): 4260 - 4266.
dc.identifier.citedreferenceBarry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol. 2002; 2 ( 6 ): 401 - 409.
dc.identifier.citedreferenceFan Z, Zhang Q. Molecular mechanisms of lymphocyte-mediated cytotoxicity. Cell Mol Immunol. 2005; 2 ( 4 ): 259 - 264.
dc.identifier.citedreferenceTaylor PV, Hancock KW. Antigenicity of trophoblast and possible antigen-masking effects during pregnancy. Immunology. 1975; 28 ( 5 ): 973 - 982.
dc.identifier.citedreferenceNguyen TG, Ward CM, Morris JM. To B or not to B cells-mediate a healthy start to life. Clin Exp Immunol. 2013; 171 ( 2 ): 124 - 134.
dc.identifier.citedreferenceMiller D, Gershater M, Slutsky R, Romero R, Gomez-Lopez N. Maternal and fetal T cells in term pregnancy and preterm labor. Cell Mol Immunol. 2020; 17 ( 7 ): 693 - 704.
dc.identifier.citedreferenceMedawar PB. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol. 1953; 7: 320 - 328.
dc.identifier.citedreferenceGomez-Lopez N, Guilbert LJ, Olson DM. Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol. 2010; 88 ( 4 ): 625 - 633.
dc.identifier.citedreferenceBonney EA, Shepard MT, Bizargity P. Transient modification within a pool of CD4 T cells in the maternal spleen. Immunology. 2011; 134 ( 3 ): 270 - 280.
dc.identifier.citedreferenceGomez-Lopez N, StLouis D, Lehr MA, Sanchez-Rodriguez EN, Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol Immunol. 2014; 11 ( 6 ): 571 - 581.
dc.identifier.citedreferenceBonney EA. Alternative theories: Pregnancy and immune tolerance. J Reprod Immunol. 2017; 123: 65 - 71.
dc.identifier.citedreferenceElderman M, Hugenholtz F, Belzer C, et al. Changes in intestinal gene expression and microbiota composition during late pregnancy are mouse strain dependent. Sci Rep. 2018; 8 ( 1 ): 10001.
dc.identifier.citedreferenceWherry EJ. T cell exhaustion. Nat Immunol. 2011; 12 ( 6 ): 492 - 499.
dc.identifier.citedreferenceWaldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020; 20 ( 11 ): 651 - 668.
dc.identifier.citedreferenceMoldenhauer LM, Diener KR, Thring DM, Brown MP, Hayball JD, Robertson SA. Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female immune response to pregnancy. J Immunol. 2009; 182 ( 12 ): 8080 - 8093.
dc.identifier.citedreferenceArenas-Hernandez M, Romero R, Gershater M, et al. Specific innate immune cells uptake fetal antigen and display homeostatic phenotypes in the maternal circulation. J Leukoc Biol. 2022; 111 ( 3 ): 519 - 538.
dc.identifier.citedreferenceSchumacher A, Wafula PO, Bertoja AZ, et al. Mechanisms of action of regulatory T cells specific for paternal antigens during pregnancy. Obstet Gynecol. 2007; 110 ( 5 ): 1137 - 1145.
dc.identifier.citedreferenceBoly TJ, Bermick JR. Maternal-fetal tolerance: Not just a uterine affair. J Leukoc Biol. 2022; 111 ( 3 ): 515 - 517.
dc.identifier.citedreferencePhillippe M. Cell-Free Fetal DNA, Telomeres, and the Spontaneous Onset of Parturition. Reprod Sci. 2015; 22 ( 10 ): 1186 - 1201.
dc.identifier.citedreferenceGoldfarb IT, Adeli S, Berk T, Phillippe M. Fetal and Placental DNA Stimulation of TLR9: A Mechanism Possibly Contributing to the Pro-inflammatory Events During Parturition. Reprod Sci. 2018; 25 ( 5 ): 788 - 796.
dc.identifier.citedreferenceGomez-Lopez N, Romero R, Schwenkel G, et al. Cell-Free Fetal DNA Increases Prior to Labor at Term and in a Subset of Preterm Births. Reprod Sci. 2020; 27 ( 1 ): 218 - 232.
dc.identifier.citedreferenceYeganeh Kazemi N, Fedyshyn B, Sutor S, Fedyshyn Y, Markovic S, Enninga EAL. Maternal Monocytes Respond to Cell-Free Fetal DNA and Initiate Key Processes of Human Parturition. J Immunol. 2021; 207 ( 10 ): 2433 - 2444.
dc.identifier.citedreferenceGomez-Lopez N, Romero R, Galaz J, et al. Transcriptome changes in maternal peripheral blood during term parturition mimic perturbations preceding spontaneous preterm birthdagger. Biol Reprod. 2022; 106 ( 1 ): 185 - 199.
dc.identifier.citedreferenceAbadía-Molina AC, Ruiz C, Montes MJ, King A, Loke YW, Olivares EG. Immune phenotype and cytotoxic activity of lymphocytes from human term decidua against trophoblast. J Reprod Immunol. 1996; 31 ( 1-2 ): 109 - 123.
dc.identifier.citedreferenceSindram-Trujillo A, Scherjon S, Kanhai H, Roelen D, Claas F. Increased T-cell activation in decidua parietalis compared to decidua basalis in uncomplicated human term pregnancy. Am J Reprod Immunol. 2003; 49 ( 5 ): 261 - 268.
dc.identifier.citedreferenceShah NM, Herasimtschuk AA, Boasso A, et al. Changes in T Cell and Dendritic Cell Phenotype from Mid to Late Pregnancy Are Indicative of a Shift from Immune Tolerance to Immune Activation. Front Immunol. 2017; 8: 1138.
dc.identifier.citedreferenceOstrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol. 2014; 193 ( 8 ): 3835 - 3841.
dc.identifier.citedreferenceLaFleur MW, Muroyama Y, Drake CG, Sharpe AH. Inhibitors of the PD-1 Pathway in Tumor Therapy. J Immunol. 2018; 200 ( 2 ): 375 - 383.
dc.identifier.citedreferencePiersiala K, Farrajota Neves da Silva P, Hjalmarsson E, et al. CD4(+) and CD8(+) T cells in sentinel nodes exhibit distinct pattern of PD-1, CD69, and HLA-DR expression compared to tumor tissue in oral squamous cell carcinoma. Cancer Sci. 2021; 112 ( 3 ): 1048 - 1059.
dc.identifier.citedreferenceConcha-Benavente F, Kansy B, Moskovitz J, Moy J, Chandran U, Ferris RL. PD-L1 Mediates Dysfunction in Activated PD-1(+) NK Cells in Head and Neck Cancer Patients. Cancer Immunol Res. 2018; 6 ( 12 ): 1548 - 1560.
dc.identifier.citedreferenceShiow LR, Rosen DB, Brdickova N, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006; 440 ( 7083 ): 540 - 544.
dc.identifier.citedreferenceLin CR, Wei TY, Tsai HY, Wu YT, Wu PY, Chen ST. Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation. FASEB J. 2015; 29 ( 12 ): 5006 - 5017.
dc.identifier.citedreferenceCibrian D, Saiz ML, de la Fuente H, et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat Immunol. 2016; 17 ( 8 ): 985 - 996.
dc.identifier.citedreferenceLabiano S, Melendez-Rodriguez F, Palazon A, et al. CD69 is a direct HIF-1alpha target gene in hypoxia as a mechanism enhancing expression on tumor-infiltrating T lymphocytes. Oncoimmunology. 2017; 6 ( 4 ): e1283468.
dc.identifier.citedreferenceCibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017; 47 ( 6 ): 946 - 953.
dc.identifier.citedreferencePrado-Drayer A, Teppa J, Sanchez P, Camejo MI. Immunophenotype of peripheral T lymphocytes, NK cells and expression of CD69 activation marker in patients with recurrent spontaneous abortions, during the mid-luteal phase. Am J Reprod Immunol. 2008; 60 ( 1 ): 66 - 74.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.