Show simple item record

NetCellMatch: Multiscale Network-Based Matching of Cancer Cell Lines to Patients Using Graphical Wavelets

dc.contributor.authorDesai, Neel
dc.contributor.authorMorris, Jeffrey S.
dc.contributor.authorBaladandayuthapani, Veerabhadran
dc.date.accessioned2023-01-11T16:21:53Z
dc.date.available2024-01-11 11:21:51en
dc.date.available2023-01-11T16:21:53Z
dc.date.issued2022-12
dc.identifier.citationDesai, Neel; Morris, Jeffrey S.; Baladandayuthapani, Veerabhadran (2022). "NetCellMatch: Multiscale Network-Based Matching of Cancer Cell Lines to Patients Using Graphical Wavelets." Chemistry & Biodiversity 19(12): n/a-n/a.
dc.identifier.issn1612-1872
dc.identifier.issn1612-1880
dc.identifier.urihttps://hdl.handle.net/2027.42/175399
dc.description.abstractCancer cell lines serve as model in vitro systems for investigating therapeutic interventions. Recent advances in high-throughput genomic profiling have enabled the systematic comparison between cell lines and patient tumor samples. The highly interconnected nature of biological data, however, presents a challenge when mapping patient tumors to cell lines. Standard clustering methods can be particularly susceptible to the high level of noise present in these datasets and only output clusters at one unknown scale of the data. In light of these challenges, we present NetCellMatch, a robust framework for network-based matching of cell lines to patient tumors. NetCellMatch first constructs a global network across all cell line-patient samples using their genomic similarity. Then, a multi-scale community detection algorithm integrates information across topologically meaningful (clustering) scales to obtain Network-Based Matching Scores (NBMS). NBMS are measures of cluster robustness which map patient tumors to cell lines. We use NBMS to determine representative “avatar” cell lines for subgroups of patients. We apply NetCellMatch to reverse-phase protein array data obtained from The Cancer Genome Atlas for patients and the MD Anderson Cell Line Project for cell lines. Along with avatar cell line identification, we evaluate connectivity patterns for breast, lung, and colon cancer and explore the proteomic profiles of avatars and their corresponding top matching patients. Our results demonstrate our framework’s ability to identify both patient-cell line matches and potential proteomic drivers of similarity. Our methods are general and can be easily adapted to other’omic datasets.
dc.publisherWiley Periodicals, Inc.
dc.titleNetCellMatch: Multiscale Network-Based Matching of Cancer Cell Lines to Patients Using Graphical Wavelets
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175399/1/cbdv202200746.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175399/2/cbdv202200746_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175399/3/cbdv202200746-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cbdv.202200746
dc.identifier.sourceChemistry & Biodiversity
dc.identifier.citedreferenceD. Ahmed, P. Eide, I. Eilertsen, S. Danielsen, M. Eknaes, M. Hektoen, G. Lind, R. Lothe, ‘Epigenetic and genetic features of 24 colon cancer cell lines’, Oncogenesis 2013, 2, 71.
dc.identifier.citedreferenceS. Habib, L. Leifer, M. Azam, A. Siddiqui, K. Rajdev, M. Chalhoub, ‘Giant cell carcinoma of the lung successfully treated with surgical resection and adjuvant vinorelbine and cisplatin’, Respiratory Medicine Case Reports 2018, 25, 300 – 302.
dc.identifier.citedreferenceJ. Ronen, S. Hayat, A. Akalin, ‘Evaluation of colorectal cancer subtypes and cell lines using deep learning’, Life Science Alliance 2019, 2.
dc.identifier.citedreferenceM. El-Bahrawy, S. Poulsom, A. Rowan, I. Tomlinson, M. Alison, ‘Characterization of the e-cadherin/catenin complex in colorectal carcinoma cell lines’, International Journal of Experimental Pathology 2004, 85, 65 – 74.
dc.identifier.citedreferenceD. Hammond, P. Vandergheynst, R. Gribonval,’Wavelets on graphs via spectral graph theory’, Applied and Computational Harmonic Analysis 2011, 30, 129–150.
dc.identifier.citedreferenceK. Thanki, M. Nicholls, A. Gajjar, A. Senagore, S. Qiu, C. Szabo, M. Hellmich, C. Chao, ‘Consensus molecular subtypes of colorectal cancer and their clinical implications’, International Biological and Biomedical Journal 2017, 3, 105 – 111.
dc.identifier.citedreferenceD. Mouradov, C. Sloggett, R. Jorissen, C. Love, S. Li, A. Burgess, D. Arango, R. Strausberg, D. Buchanan, S. Wormald, et al., ‘Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer’, Cancer Research 2014, 74, 3238 – 3247.
dc.identifier.citedreferenceR. Pal, N. Wei, N. Song, S. Wu, R. Kim, Y. Wang, P. Gavin, P. Lucas, A. Srinivasan, C. Allegra, et al., ‘Molecular subtypes of colorectal cancer in pre-clinical models show differential response to targeted therapies: Treatment implications beyond kRAS mutations’, PloS One 2018, 13.
dc.identifier.citedreferenceY. Shen, X. Li, D. Dong, B. Zhang, Y. Xue, P. Shang, ‘Transferrin receptor 1 in cancer: a new sight for cancer therapy’, American Journal of Cancer Research 2018, 8, 916 – 931.
dc.identifier.citedreferenceD. Li, F. Bi, N. Chen, J. Cao, W. Sun, Y. Zhou, C. Li, Q. Yang, ‘A novel crosstalk between BRCA1 and poly (adp-ribose) polymerase 1 in breast cancer’, Cell Cycle 2014, 13, 3442 – 3449.
dc.identifier.citedreferenceL. Shan, X. Li, L. Liu, X. Ding, Q. Wang, Y. Zheng, Y. Duan, C. Xuan, Y. Wang, F. Yang, et al., ‘GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation’, Oncogene 2014, 33, 3205 – 3216.
dc.identifier.citedreferenceM. Takaku, S. Grimm, and P. Wade, ‘GATA3 in breast cancer: tumor suppressor or oncogene?’, Gene Expression The Journal of Liver Research 2015, 16, 163 – 168.
dc.identifier.citedreferenceJ. Lee, Y. Park, N. Oh, K. Kwack, K. Park, ‘A transcriptional complex composed of ER ( α ), GATA3, FOXA1 and ELL3 regulates Il-20 expression in breast cancer cells’, Oncotarget 2017, 8, 42752 – 42760.
dc.identifier.citedreferenceN. Jagadish, S. Agarwal, N. Gupta, R. Fatima, S. Devi, V. Kumar, V. Suri, R. Kumar, V. Suri, T. Sadasukhi, et al., ‘Heat shock protein 70–2 (HSP70-2) overexpression in breast cancer’, Journal of Experimental & Clinical Cancer Research 2016, 35, 1 – 14.
dc.identifier.citedreferenceL. Zhang, N. Tran, H. Su, R. Wang, Y. Lu, H. Tang, S. Aoyagi, A. Guo, A. Khodadadi-Jamayran, D. Zhou, et al., ‘Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing’, Elife 2015, 4.
dc.identifier.citedreferenceC. Xu, X. Wang, W. Li, K. Wang, L. Ding, ‘Expression and clinical significance of Claudin-7 in patients with colorectal cancer’, Technology in Cancer Research & Treatment 2018, 17.
dc.identifier.citedreferenceF. Greig, G. Nixon, ‘Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states’ Pharmacology & Therapeutics 2014, 143, 265 – 274.
dc.identifier.citedreferenceJ. Xie, B. Li, H. Yu, Q. Gao, W. Li, H. Wu, Z. Qin, ‘TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy’, Cancer Research 2014, 74, 5127 – 5138.
dc.identifier.citedreferenceA. Du, Y. Jiang, C. Fan, ‘NDRG1 downregulates ATF3 and inhibits cisplatin-induced cytotoxicity in lung cancer a549 cells’, International Journal of Medical Sciences 2018, 15, 1502 – 1507.
dc.identifier.citedreferenceV. Padma, ‘An overview of targeted cancer therapy’, BioMedicine 2015, 5, 19.
dc.identifier.citedreferenceA. Ertel, A. Verghese, S. Byers, M. Ochs, A. Tozeren, ‘Pathway-specific differences between tumor cell lines and normal and tumor tissue cells’, Molecular Cancer 2006, 5, 55.
dc.identifier.citedreferenceH. Wang, S. Huang, J. Shou, E. Su, J. Onyia, B. Liao, and S. Li, ‘Comparative analysis and integrative classification of NCI-60 cell lines and primary tumors using gene expression profiling data’, BMC Genomics 2006, 7, 166.
dc.identifier.citedreferenceU. Shankavaram, W. Reinhold, S. Nishizuka, S. Major, D. Morita, K. Chary, M. Reimers, U. Scherf, A. Kahn, D. Dolginow, et al., ‘Transcript and protein expression profiles of the nci-60 cancer cell panel: an integromic microarray study’, Molecular Cancer Therapeutics 2007, 6, 820 – 832.
dc.identifier.citedreferenceS. Myhre, O. Lingjærde, B. Hennessy, M. Aure, M. Carey, J. Alsner, T. Tramm, J. Overgaard, G. Mills, A. Børresen-Dale, et al., ‘Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteins’, Molecular Oncology 2013, 7, 704 – 718.
dc.identifier.citedreferenceV. Bower, ‘NCI-match pairs tumor mutations with matching drugs’, Nature Biotechnology 2015, 33, 790 – 792.
dc.identifier.citedreferenceX. Dong, D. Huang, X. Yi, S. Zhang, Z. Wang, B. Yan, P. Sham, K. Chen, M. Li, ‘Diversity spectrum analysis identifies mutation-specific effects of cancer driver genes’, Communications Biology 2020, 3, 1 – 12.
dc.identifier.citedreferenceA. Warren, Y. Chen, A. Jones, T. Shibue, W. Hahn, J. Boehm, F. Vazquez, A. Tsherniak, J. McFarland,’Global computational alignment of tumor and cell line transcriptional profiles’, Nature Communications 2021, 12, 1–12.
dc.identifier.citedreferenceA. Goodspeed, L. Heiser, J. Gray, J. Costello, ‘Tumor-derived cell lines as molecular models of cancer pharmacogenomics’, Molecular Cancer Research 2016, 14, 3 – 13.
dc.identifier.citedreferenceG. Kaur, J. Dufour, ‘Cell Lines: Valuable tools or useless artifacts’, Spermatogenesis 2012, 2, 1 – 5.
dc.identifier.citedreferenceP. Mirabelli, L. Coppola, and M. Salvatore, ‘Cancer cell lines are useful model systems for medical research’, Cancers 2019, 11, 1098.
dc.identifier.citedreferenceD. Ferreira, F. Adega, R. Chaves, ‘The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing’, Oncogenomics and Cancer Proteomics - novel approaches in biomarkers discovery and therapeutic targets in cancer 2013.
dc.identifier.citedreferenceM. Salvadores, F. Fuster-Tormo, F. Supek, ‘Matching cell lines with cancer type and subtype of origin via mutational, epigenomic, and transcriptomic patterns’, Science Advances 2020, 6, 1862.
dc.identifier.citedreferenceA. Jarnuczak, H. Najgebauer, M. Barzine, D. Kundu, F. Ghavidel, Y. Perez-Riverol, I. Papatheodorou, A. Brazma, J. Vizcaíno, ‘An integrated landscape of protein expression in human cancer’, Scientific Data 2021, 8, 1 – 14.
dc.identifier.citedreferenceN. Lobo, C. Gedye, A. Apostoli, K Brown, J. Paterson, N. Stickle, M. Robinette, N. Fleshner, R. Hamilton, G. Kulkarni, et al., ‘Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine’, BMC Cancer 2016, 16, 1 – 15.
dc.identifier.citedreferenceZ. Qiu, K. Zou, L. Zhuang, J. Qin, H. Li, C. Li, Z. Zhang, X. Chen, J. Cen, Z. Meng, et al., ‘Hepatocellular carcinoma cell lines retain the genomic and transcriptomic landscapes of primary human cancers’, Scientific Reports 2016, 6, 27411.
dc.identifier.citedreferenceS. Nishizuka, L. Charboneau, L. Young, S. Major, W. Reinhold, M. Waltham, H. Mehr, K. Bussey, J. Lee, V. Espina, et al., ‘Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays’, Proceedings of the National Academy of Sciences 2003, 100, 14229 – 14234.
dc.identifier.citedreferenceK. Yu, B. Chen, D. Aran, J. Charalel, C. Yau, DM. Wolf, L. Van’T Veer, A. Butte, T. Goldstein, M. Sirota, ‘Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types’, Nature Communications 2019, 10, 1–11.
dc.identifier.citedreferenceA. Collins, S. Lang, ‘A systematic review of the validity of patient derived xenograft (pdx) models: the implications for translational research and personalised medicine’, PeerJ 2018, 6, 5981.
dc.identifier.citedreferenceN. Tremblay, P. Borgnat, ‘Graph wavelets for multiscale community mining’, IEEE Transactions on Signal Processing 2014, 62, 5227 – 5239.
dc.identifier.citedreferenceJ. Li, Y. Lu, R. Akbani, Z. Ju, P. Roebuck, W. Liu, J. Yang, B. Broom, R. Verhaak, D. Kane, et al., ‘TCPA: a resource for cancer functional proteomics data’, Nature Methods 2013, 10, 1046 – 1047.
dc.identifier.citedreferenceJ. Li, W. Zhao, R. Akbani, W. Liu, Z. Ju, S. Ling, C. Vellano, P. Roebuck, Q. Yu, A. Eterovic, et al., ‘Characterization of human cancer cell lines by reverse-phase protein arrays’, Cancer Cell 2017, 31, 225 – 239.
dc.identifier.citedreferenceJ. Hardin, A. Mitani, L. Hicks, B. VanKoten, ‘A robust measure of correlation between two genes on a microarray’, BMC Bioinformatics 2007, 8, 1 – 13.
dc.identifier.citedreferenceH. Akoglu, ‘User’s guide to correlation coefficients’, Turkish Journal of Emergency Medicine 2018, 18, 91 – 93.
dc.identifier.citedreferenceR. Liu, H. Thiessen-Philbrook, R. Vasan, J. Coresh, P. Ganz, J. Bonventre, P. Kimmel, C. Parikh, ‘Comparison of proteomic methods in evaluating biomarker-AKI associations in cardiac surgery patients’, Translational Research 2021, 238, 49 – 62.
dc.identifier.citedreferenceÁ. Osz, A. Lánczky, B. Gyorffy, ‘Survival analysis in breast cancer using proteomic data from four independent datasets’, Scientific Reports 2021, 11, 1 – 15.
dc.identifier.citedreferenceL. Song, P. Langfelder, S. Horvath, ‘Comparison of co-expression measures: mutual information, correlation, and model based indices’, BMC Bioinformatics 2012, 13, 328.
dc.identifier.citedreferenceU. Von Luxburg, ‘A tutorial on spectral clustering’, Statistics and Computing 2007, 17, 395 – 416.
dc.identifier.citedreferenceD. Shuman, B. Ricaud, P. Vandergheynst, ‘A windowed graph fourier transform’, IEEE Statistical Signal Processing Workshop (SSP ) 2012, 133 – 136.
dc.identifier.citedreferenceR. Boulos, N. Tremblay, A. Arneodo, P. Borgnat, B. Audit, ‘Multi-scale structural community organisation of the human genome’, BMC Bioinformatics 2017, 18, 1 – 13.
dc.identifier.citedreferenceR. Akbani, P. Ng, H. Werner, M. Shahmoradgoli, F. Zhang, Z. Ju, W. Liu, J. Yang, K. Yoshihara, J. Li, et al., ‘A pan-cancer proteomic perspective on the cancer genome atlas’, Nature Communications 2014, 5, 1 – 15.
dc.identifier.citedreferenceR. Akbani, K. Becker, N. Carragher, T. Goldstein, L. Koning, U. Korf, L. Liotta, G. Mills, S. Nishizuka, M. Pawlak, et al., ‘Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (reverse phase protein array) society’, Molecular & Cellular Proteomics 2014, 13, 1625 – 1643.
dc.identifier.citedreferenceK. Tomczak, P. Czerwinska, M. Wiznerowicz, ‘The cancer genome atlas (TCGA): an immeasurable source of knowledge’, Contemporary Oncology 2015, 19, 68 – 77.
dc.identifier.citedreferenceJ. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. Margolin, S. Kim, C. Wilson, J. Lehár, G. Kryukov, D. Sonkin, et al., ‘The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity’, Nature 2012, 483, 603 – 607.
dc.identifier.citedreferenceH. Gonçalves Jr., M. Guerra, J. Cintra, V. Fayer, I. Brum, M. Teixeira, ‘Survival study of triple-negative and non–triple-negative breast cancer in a Brazilian cohort’, Clinical Medicine Insights: Oncology 2018, 12.
dc.identifier.citedreferenceK. Chavez, S. Garimella, S. Lipkowitz, ‘Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer’, Breast Disease 2010, 32, 35 – 48.
dc.identifier.citedreferenceK. Subik, J. Lee, L. Baxter, T. Strzepek, D. Costello, P. Crowley, L. Xing, M. Hung, T. Bonfiglio, D. Hicks, et al., ‘The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines’, Breast Cancer: Basic and Clinical Research 2010, 4, 35 – 41.
dc.identifier.citedreferenceA. Michmerhuizen, D. Spratt, L. Pierce, C. Speers, ‘Are we there yet? understanding androgen receptor signaling in breast cancer’, NPJ Breast Cancer 2020, 6, 1 – 19.
dc.identifier.citedreferenceV. Abramson, C. Arteaga, ‘New strategies in HER2 - overexpressing breast cancer: many combinations of targeted drugs available’, Clinical Cancer Research 2011, 17, 952 – 958.
dc.identifier.citedreferenceS. Nowsheen, T. Cooper, J. Bonner, A. LoBuglio, E. Yang, ‘HER2 overexpression renders human breast cancers sensitive to PARP inhibition independently of any defect in homologous recombination DNA repair’, Cancer research 2012, 72, 4796 – 4806.
dc.identifier.citedreferenceD. Wu, Y. Pang, M. Wilkerson, D. Wang, P. Hammerman, J. Liu, ‘Gene-expression data integration to squamous cell lung cancer subtypes reveals drug sensitivity’, British Journal of Cancer 2013, 109, 1599 – 1608.
dc.identifier.citedreferenceM. Wilkerson, X. Yin, K. Hoadley, Y. Liu, M. Hayward, C. Cabanski, K. Muldrew, C. Miller, S. Randell, M. Socinski, et al., ‘Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types’, Clinical Cancer Research 2010, 16, 4864 – 4875.
dc.identifier.citedreferenceY. Xu, P. Gao, X. Lv, L. Zhang, J. Zhang, ‘The role of the ataxia telangiectasia mutated gene in lung cancer: recent advances in research’, Therapeutic Advances in Respiratory Disease 2017, 11, 375 – 380.
dc.identifier.citedreferenceC. Li, H. Lu, ‘Adenosquamous carcinoma of the lung’, OncoTargets and Therapy 2018, 11, 4829 – 4835.
dc.identifier.citedreferenceA. Weber, N. Drobnitzky, A. Devery, S. Bokobza, R. Adams, T. Maughan, A. Ryan, ‘Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer’, Oncotarget 2016, 7, 60807 – 60822.
dc.identifier.citedreferenceI. Wistuba, D. Bryant, C. Behrens, S. Milchgrub, A. Virmani, R. Ashfaq, J. Minna, A. Gazdar, ‘Comparison of features of human lung cancer cell lines and their corresponding tumors’, Clinical Cancer Research 1999, 5, 991 – 1000.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.