Show simple item record

Sustainable decision making for chemical process systems via dimensionality reduction of many objective problems

dc.contributor.authorRussell, Justin M.
dc.contributor.authorAllman, Andrew
dc.date.accessioned2023-02-01T18:57:24Z
dc.date.available2024-03-01 13:57:23en
dc.date.available2023-02-01T18:57:24Z
dc.date.issued2023-02
dc.identifier.citationRussell, Justin M.; Allman, Andrew (2023). "Sustainable decision making for chemical process systems via dimensionality reduction of many objective problems." AIChE Journal 69(2): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/175746
dc.description.abstractRecent global events and the rise of sustainable investing have made clear that the chemical and energy industry must consider sustainability goals beyond profit maximization to remain competitive. Multiobjective optimization provides an ideal framework for analyzing sustainability tradeoffs, but when four or more objectives are considered, the ability to rigorously solve problems and interpret results is lost. This necessitates an approach to systematically reduce the dimensionality of many objective problems to three or fewer objectives. In this work, an algorithm to group objectives based on their correlating nature a priori to solving the full space problem is proposed. It utilizes community detection on a novel weighted objective correlation graph to identify two or three groups of correlated objectives. Results from three representative case studies demonstrate that objective groupings obtained from this algorithm minimize the amount of tradeoff information lost and outperform intuitive groupings by economics or the environment.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othersustainability
dc.subject.othercommunity detection
dc.subject.othermulti-objective optimization
dc.subject.otheroptimization
dc.titleSustainable decision making for chemical process systems via dimensionality reduction of many objective problems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175746/1/aic17962.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175746/2/aic17962_am.pdf
dc.identifier.doi10.1002/aic.17962
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferencedel Rio-Chanona EA, Fiorelli F, Vassiliadis VS. Automated structure detection for distributed process optimizaiton. Comput Chem Eng. 2016; 89: 135 - 148.
dc.identifier.citedreferenceMarler RT, Arora JS. The weighted sum method for multi-objective optimization: new insights. Struct Multidiscip Optim. 2009; 41: 853 - 862.
dc.identifier.citedreferenceGiagkozia I, Fleming PJ. Methods for multi-objective optimization: an analysis. Inform Sci. 2015; 293: 338 - 350.
dc.identifier.citedreferenceDutta S. Optimization in Chemical Engineering. Cambridge University Press; 2016.
dc.identifier.citedreferenceEmmerich MTM, Deutz AH. A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Nat Comput. 2018; 17: 585 - 609.
dc.identifier.citedreferenceJalving J, Cao Y, Zavala VM. Graph-based modeling and simulation of complex systems. Comput Chem Eng. 2019; 125: 134 - 154.
dc.identifier.citedreferenceFortunato S, Hric D. Community detection in networks: a user guide. Phys Rep. 2016; 659: 1 - 44.
dc.identifier.citedreferenceNewman MEJ. Spectral methods for community detection and graph partitioning. Phys Rev E. 2013; 88: 042822.
dc.identifier.citedreferenceBlondel VD, Guilaume JL, Lambiotte R, Lefebver E. Fast unfolding of communities in large networks. J Stat Mech: Theory Exp. 2008; 2008: P10008.
dc.identifier.citedreferenceTraag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019; 9: 5233.
dc.identifier.citedreferenceTang W, Allman A, Pourkargar DB, Daoutidis P. Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection. Comput Chem Eng. 2018; 111: 43 - 54.
dc.identifier.citedreferenceAllman A, Tang W, Daoutidis P. DeCODe: a community-based algorithm for generating high-quality decompositions of optimization problems. Optim Eng. 2019; 20: 1067 - 1084.
dc.identifier.citedreferenceMitrai I, Tang W, Daoutidis P. Stochastic blockmodeling for learning the structure of optimization problems. AIChE J. 2021; 68: e17415.
dc.identifier.citedreferenceShin S, Zavala VM, Anitescu M. Decentralized schemes with overlap for solving graph-structured optimization problems. IEEE Trans Control Netw Syst. 2020; 7: 1225 - 1236.
dc.identifier.citedreferenceBodi R, Herr K, Joswig M. Algorithms for highly symmetric linear and integer programs. Math Program. 2013; 137: 65 - 90.
dc.identifier.citedreferenceShin S, Anitescu M, Zavala VM. Exponential decay of sensitivity in graph-structured nonlinear programs. SIAM J Optim. 2022; 32: 1156 - 1183.
dc.identifier.citedreferenceInternational Business Machines Corporation. V20.1: user’s manual for CPLEX. 2020.
dc.identifier.citedreferenceDunning I, Huchette J, Lubin M. JuMP: a modeling language for mathematical optimization. SIAM Rev. 2017; 59 ( 2 ): 295 - 320.
dc.identifier.citedreferenceBezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017; 59: 65 - 98.
dc.identifier.citedreferenceLimleamthong P, Guillén-Gosálbez G. Rigorous analysis of Pareto fronts in sustainability studies based on bilevel optimization: application to the redesign of the UK electricity mix. J Clean Prod. 2017; 164: 1602 - 1613.
dc.identifier.citedreferenceLi L, Liu P, Li Z, Wang X. A multi-objective optimization approach for selection of energy storage systems. Comput Chem Eng. 2018; 115: 213 - 225.
dc.identifier.citedreferenceOliveira L, Messagie M, Mertens J, Laget H, Coosemans T, Mierlo JV. Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energ Conver Manage. 2015; 101: 326 - 335.
dc.identifier.citedreferenceSaling P, Kicherer A, Dietrich-Kramer B, et al. Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess. 2002; 7: 203 - 218.
dc.identifier.citedreferencePastor L, Stambaugh RF, Taylor LA. Sustainable investing in equilibrium. J Financ Econ. 2021; 142: 550 - 571.
dc.identifier.citedreferenceYu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS. Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manage Res. 2021; 15: 233 - 248.
dc.identifier.citedreferenceNeavling S. Marathon ordered to pay fines, improve air quality in southwest Detroit. Detroit Metro Times. 2020. https://www.metrotimes.com/news/marathon-ordered-to-pay-fines-improve-air-quality-in-southwest-detroit-25018119
dc.identifier.citedreferenceWorld Meteorological Organization. State of Climate in 2021: extreme events and major impacts. 2021. https://public.wmo.int/en/media/press-release/state-of-climate-2021-extreme-events-and-major-impacts
dc.identifier.citedreferenceda Silva C, Barbosa-Pavoa AP, Carvalho A. Towards sustainable development: green supply chain design and planning using monetization methods. Bus Strategy Environ. 2021; 31: 1369 - 1394.
dc.identifier.citedreferenceAl-Qahtani A, Parkinson B, Hellgardt K, Shah N, Guillen-Gosalbez G. Uncovering the true cost of hydrogen production using life cycle monetisation. Appl Energy. 2021; 281: 115958.
dc.identifier.citedreferenceZirngast K, Kravanja Z, Pintaric ZN. The influence of variable CO 2 emission tax rate on flexible chemical process synthesis. Processes. 2021; 9: 1720.
dc.identifier.citedreferenceLeonzio G, Foscolo PU, Zondervan E. Sustainable utilization and storage of carbon dioxide: analysis and design of an innovative supply chain. Comput Chem Eng. 2019; 131: 106569.
dc.identifier.citedreferencePalys MJ, Allman A, Daoutidis P. Exploring the benefits of modular rebewable-powered ammonia production: a supply chain optimization study. Ind Eng Chem Res. 2019; 58: 5898 - 5908.
dc.identifier.citedreferenceDarom NA, Hishamudding H, Ramli R, Nopiah ZM. An inventory model of supply chain disruption recovery with safety stock and carbon emission consideration. J Clean Prod. 2018; 197: 1011 - 1021.
dc.identifier.citedreferencePizzol M, Weidema B, Brandao M, Osset P. Monetary valuation in life cycle assessment: a review. J Clean Prod. 2015; 86: 170 - 179.
dc.identifier.citedreferenceWheeler J, Paez MA, Guillen-Gosalbez G, Mele FD. Combining multi-attribute decision-making methods with multi-objective optimization in the design of biomass supply chains. Comput Chem Eng. 2018; 113: 11 - 31.
dc.identifier.citedreferenceWang P, Deng X, Zhao H, Yu S. Estimates of the social cost of carbon: a review based on meta-analysis. J Clean Prod. 2019; 209: 1494 - 1507.
dc.identifier.citedreferenceWang Z, Rangaia GP, Wang X. Preference ranking on the basis of ideal-average distance method for multi-criteria decision making. Ind Eng Chem Res. 2021; 60: 11216 - 11230.
dc.identifier.citedreferenceRangaiah GP, Feng Z, Hoadley AF. Multi-objective optimization applications in chemical process engineering: tutorial and review. Processes. 2020; 8: 508.
dc.identifier.citedreferenceRoh K, Al-Hunaidy AS, Imran H, Lee JH. Optimization-based identification of CO 2 capture and utilization processing paths for life cycle greenhouse gas reduction and economic benefits. AIChE J. 2019; 65: e16580.
dc.identifier.citedreferenceZhao X, You F. Waste high-density polyethylene recycling process systems for mitigating plastic pollution through a sustainable design and synthesis paradigm. AIChE J. 2021; 67: e17127.
dc.identifier.citedreferenceGopalakrishnan V, Bakshi B. Ecosystems as unit operations for local techno-ecological synergy: integrated process design with treatment wetlands. AIChE J. 2018; 64: 2390 - 2407.
dc.identifier.citedreferenceYou F, Tao L, Graziano DJ, Snyder SW. Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input–output analysis. AIChE J. 2012; 58: 1157 - 1180.
dc.identifier.citedreferenceAllman A, Tiffany D, Kelley S, Daoutidis P. A framework for ammonia supply chain optimization incorporating conventional and renewable generation. AIChE J. 2017; 63: 4390 - 4402.
dc.identifier.citedreferenceLiu Z, Lim MQ, Kraft M, Wang X. Simultaneous design and operation optimization of renewable combined cooling heating and power systems. AIChE J. 2020; 66: e17039.
dc.identifier.citedreferenceSaif Y, Almansoori A, Elkamel A. Sustainable optimization of waste management network over extended planning time horizon. AIChE J. 2021; 67: e17256.
dc.identifier.citedreferenceGarbie I. Sustainability optimization in manufacturing enterprises. Proc CIRP. 2015; 26: 504 - 509.
dc.identifier.citedreferenceSantibanez-Aguilar JE, Gonzalez-Campos JB, Ponce-Ortega JM, Serba-Gonzalez M, El-Halwagi MM. Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J Clean Prod. 2014; 65: 270 - 294.
dc.identifier.citedreferenceGarcia DJ, Lovett BM, You F. Considering agricultural wastes and ecosystem services in food-energy-water-waste nexus system design. J Clean Prod. 2019; 28: 941 - 955.
dc.identifier.citedreferenceWheeler J, Galan-Martin A, Mele FD, Guillen-Gosalbez G. Designing biomass supply chains within planetary boundaries. AIChE J. 2021; 67: e17131.
dc.identifier.citedreferenceMota B, Gomes MI, Carvalho A, Barbosa-Pavoa AP. Sustainable supply chains: an integrated modeling approach under uncertainty. Omega. 2018; 77: 32 - 57.
dc.identifier.citedreferenceSaxena DK, Duro JA, Tiwari A, Deb K, Zhang Q. Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput. 2013; 17: 77 - 99.
dc.identifier.citedreferencede Freitas ARR, Fleming PJ, Guimares FG. Aggregation trees for visualization and dimension reduction in many-objective optimization. Inform Sci. 2015; 298: 288 - 314.
dc.identifier.citedreferenceBrockhoff D, Zitzler E. Objective reduction in evolutionary multiobjective optimization: theory and applications. Evol Comput. 2009; 17: 135 - 166.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.