Show simple item record

Intergenerational arsenic exposure on the mouse epigenome and metabolic physiology

dc.contributor.authorColwell, Mathia L.
dc.contributor.authorFlack, Nicole
dc.contributor.authorRezabek, Amanda
dc.contributor.authorFaulk, Christopher
dc.date.accessioned2023-03-03T21:10:15Z
dc.date.available2024-03-03 16:10:13en
dc.date.available2023-03-03T21:10:15Z
dc.date.issued2023-02
dc.identifier.citationColwell, Mathia L.; Flack, Nicole; Rezabek, Amanda; Faulk, Christopher (2023). "Intergenerational arsenic exposure on the mouse epigenome and metabolic physiology." Environmental and Molecular Mutagenesis 64(2): 72-87.
dc.identifier.issn0893-6692
dc.identifier.issn1098-2280
dc.identifier.urihttps://hdl.handle.net/2027.42/175923
dc.description.abstractInorganic arsenic (iAs) is one of the largest toxic exposures to impact humanity worldwide. Exposure to iAs during pregnancy may disrupt the proper remodeling of the epigenome of F1 developing offspring and potentially their F2 grand-offspring via disruption of fetal primordial germ cells (PGCs). There is a limited understanding between the correlation of disease phenotype and methylation profile within offspring of both generations and whether it persists to adulthood. Our study aims to understand the intergenerational effects of in utero iAs exposure on the epigenetic profile and onset of disease phenotypes within F1 and F2 adult offspring, despite the lifelong absence of direct arsenic exposure within these generations. We exposed F0 female mice (C57BL6/J) to the following doses of iAs in drinking water 2 weeks before pregnancy until the birth of the F1 offspring: 1, 10, 245, and 2300 ppb. We found sex- and dose-specific changes in weight and body composition that persist from early time to adulthood within both generations. Fasting blood glucose challenge suggests iAs exposure causes dysregulation of glucose metabolism, revealing generational, exposure, and sex-specific differences. Toward understanding the mechanism, genome-wide DNA methylation data highlights exposure-specific patterns in liver, finding dysregulation within genes associated with cancer, T2D, and obesity. We also identified regions containing persistently differentially methylated CpG sites between F1 and F2 generations. Our results indicate the F1 developing embryos and their PGCs, which will result in F2 progeny, retain epigenetic damage established during the prenatal period and are associated with adult metabolic dysfunction.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherarsenic
dc.subject.otherDNA methylation
dc.subject.otherDOHaD
dc.subject.othergerm cell
dc.subject.otherintergenerational
dc.subject.othermouse
dc.titleIntergenerational arsenic exposure on the mouse epigenome and metabolic physiology
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175923/1/em22526.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/175923/2/em22526_am.pdf
dc.identifier.doi10.1002/em.22526
dc.identifier.sourceEnvironmental and Molecular Mutagenesis
dc.identifier.citedreferenceSasaki, H. & Matsui, Y. ( 2008 ) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nature Reviews Genetics, 9, 129 – 140. Available from: https://doi.org/10.1038/nrg2295
dc.identifier.citedreferenceNavas-Acien, A., Spratlen, M.J., Abuawad, A., LoIacono, N.J., Bozack, A.K. & Gamble, M.V. ( 2019 ) Early-life arsenic exposure, nutritional status, and adult diabetes risk. Current Diabetes Reports, 19 ( 12 ), 1 – 8. Available from: https://doi.org/10.1007/S11892-019-1272-9
dc.identifier.citedreferenceNohara, K., Baba, T., Murai, H., Kobayashi, Y., Suzuki, T., Tateishi, Y. et al. ( 2011 ) Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Archives of Toxicology, 85, 653 – 661. Available from: https://doi.org/10.1007/s00204-010-0611-z
dc.identifier.citedreferenceNohara, K., Suzuki, T. & Okamura, K. ( 2020 ) Gestational arsenic exposure and paternal intergenerational epigenetic inheritance. Toxicology and Applied Pharmacology, 409, 115319. Available from: https://doi.org/10.1016/J.TAAP.2020.115319
dc.identifier.citedreferenceOuni, M., Saussenthaler, S., Eichelmann, F., Jähnert, M., Stadion, M., Wittenbecher, C. et al. ( 2020 ) Epigenetic changes in islets of Langerhans preceding the onset of diabetes. Diabetes, 69 ( 11 ), 2503 – 2517. Available from: https://doi.org/10.2337/DB20-0204
dc.identifier.citedreferenceOwaydhah, W.H., Ashton, N., Verrey, F. & Glazier, J.D. ( 2021 ) Differential expression of system L amino acid transporter subtypes in rat placenta and yolk sac. Placenta, 103, 188 – 198. Available from: https://doi.org/10.1016/J.PLACENTA.2020.10.034
dc.identifier.citedreferencePainter, R.C., Osmond, C., Gluckman, P., Hanson, M., Phillips, D.I.W. & Roseboom, T.J. ( 2008 ) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG: An International Journal of Obstetrics and Gynaecology, 115, 1243 – 1249. Available from: https://doi.org/10.1111/j.1471-0528.2008.01822.x
dc.identifier.citedreferencePark, S., Blaser, S., Marchal, M.A., Houston, D.W. & Sheets, M.D. ( 2016 ) A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of MRNAs encoding cell fate regulators. Development, 143 ( 5 ), 864 – 871. Available from: https://doi.org/10.1242/DEV.131359
dc.identifier.citedreferencePurpose and Cognition: The Determiners of Animal Learning. n.d. Available from: https://psycnet.apa.org/fulltext/1927-00608-001.pdf [Accessed 1st December 2021].
dc.identifier.citedreferenceRivas-Santiago, C., González-Curiel, I., Zarazua, S., Murgu, M., Ruiz Cardona, A., Lazalde, B. et al. ( 2019 ) Lipid metabolism alterations in a rat model of chronic and intergenerational exposure to arsenic. BioMed Research International, 2019, 1 – 17. Available from: https://doi.org/10.1155/2019/4978018
dc.identifier.citedreferenceRodriguez, K.F., Ungewitter, E.K., Crespo-Mejias, Y., Liu, C., Nicol, B., Kissling, G.E. et al. ( 2016 ) Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environmental Health Perspectives, 124, 336 – 343. Available from: https://doi.org/10.1289/ehp.1509703
dc.identifier.citedreferenceRojas, D., Rager, J.E., Smeester, L., Bailey, K.A., Drobná, Z., Rubio-Andrade, M. et al. ( 2015 ) Prenatal arsenic exposure and the epigenome: identifying sites of 5-Methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicological Sciences: An Official Journal of the Society of Toxicology, 143 ( 1 ), 97 – 106. Available from: https://doi.org/10.1093/toxsci/kfu210
dc.identifier.citedreferenceRowlands, D.S., Page, R.A., Sukala, W.R., Giri, M., Ghimbovschi, S.D., Hayat, I. et al. ( 2014 ) Multi-omic integrated networks connect DNA methylation and MiRNA with skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity. Physiological Genomics, 46 ( 20 ), 747 – 765. Available from: https://doi.org/10.1152/PHYSIOLGENOMICS.00024.2014
dc.identifier.citedreferenceSaeed, M. ( 2018 ) Locus and gene-based GWAS meta-analysis identifies new diabetic nephropathy genes. Immunogenetics, 70 ( 6 ), 347 – 353. Available from: https://doi.org/10.1007/S00251-017-1044-0/TABLES/2
dc.identifier.citedreferenceSkinner, M. & Guerrero-Bosagna, C. ( 2014 ) Role of CpG deserts in the epigenetic transgenerational inheritance of differential DNA methylation regions. BMC Genomics, 15 ( 1 ), 692. Available from: https://doi.org/10.1186/1471-2164-15-692
dc.identifier.citedreferenceSmeester, L. & Fry, R.C. ( 2018 ) Long-term health effects and underlying biological mechanisms of developmental exposure to arsenic. Current Environmental Health Reports, 5, 134 – 144. Available from: https://doi.org/10.1007/s40572-018-0184-1
dc.identifier.citedreferenceSommese, L., Benincasa, G., Lanza, M., Sorriento, A., Schiano, C., Lucchese, R. et al. ( 2018 ) Novel epigenetic-sensitive clinical challenges both in type 1 and type 2 diabetes. Journal of Diabetes and its Complications, 32 ( 11 ), 1076 – 1084. Available from: https://doi.org/10.1016/J.JDIACOMP.2018.08.012
dc.identifier.citedreferenceSpratlen, M.J., Gamble, M.V., Grau-Perez, M., Kuo, C.C., Best, L.G., Yracheta, J. et al. ( 2017 ) Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: evidence from the strong heart study. Food and Chemical Toxicology, 105, 387 – 397. Available from: https://doi.org/10.1016/j.fct.2017.05.004
dc.identifier.citedreferenceTequeanes, A.L., Lozada, D.P., Gigante, M.C., Assunção, F., Chica, D.A.G. & Horta, B.L. ( 2009 ) Maternal anthropometry is associated with the body mass index and waist:height ratio of offspring at 23 years of age. The Journal of Nutrition, 139 ( 4 ), 750 – 754. Available from: https://doi.org/10.3945/JN.108.100669
dc.identifier.citedreferenceThomas, D.J., Waters, S.B. & Styblo, M. ( 2004 ) Elucidating the pathway for arsenic methylation. Toxicology and Applied Pharmacology, 198, 319 – 326. Available from: https://doi.org/10.1016/j.taap.2003.10.020
dc.identifier.citedreferenceTinkelman, N.E., Spratlen, M.J., Domingo-Relloso, A., Tellez-Plaza, M., Grau-Perez, M., Francesconi, K.A. et al. ( 2020 ) Associations of maternal arsenic exposure with adult fasting glucose and insulin resistance in the strong heart study and strong heart family study. Environment International, 137, 105531. Available from: https://doi.org/10.1016/J.ENVINT.2020.105531
dc.identifier.citedreferenceTitus-Ernstoff, L., Troisi, R., Hatch, E.E., Hyer, M., Wise, L.A., Palmer, J.R. et al. ( 2008 ) Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology, 19, 251 – 257. Available from: https://doi.org/10.1097/EDE.0b013e318163152a
dc.identifier.citedreferenceToxicological Profile For Arsenic|Enhanced Reader. n.d.
dc.identifier.citedreferenceTsang, V., Fry, R.C., Niculescu, M.D., Rager, J.E., Saunders, J., Paul, D.S. et al. ( 2012 ) The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicology and Applied Pharmacology, 264, 439 – 450. Available from: https://doi.org/10.1016/j.taap.2012.08.022
dc.identifier.citedreferenceWaalkes, M.P., Liu, J., Ward, J.M. & Diwan, B.A. ( 2004 ) Animal models for arsenic carcinogenesis: inorganic arsenic is a transplacental carcinogen in mice. Toxicology and Applied Pharmacology, 198, 377 – 384. Available from: https://doi.org/10.1016/j.taap.2003.10.028
dc.identifier.citedreferenceXie, Y., Liu, J., Benbrahim-Tallaa, L., Ward, J.M., Logsdon, D., Diwan, B.A. et al. ( 2007 ) Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology, 236, 7 – 15. Available from: https://doi.org/10.1016/j.tox.2007.03.021
dc.identifier.citedreferenceYoung, J.L., Lu, C. & Christopher States, J. ( 2018 ) Impact of prenatal arsenic exposure on chronic adult diseases. In: Systems biology in reproductive medicine. Routledge: Taylor and Francis. pp. 1 – 15. Available from: https://doi.org/10.1080/19396368.2018.1480076
dc.identifier.citedreferenceZhao, C.Q., Young, M.R., Diwan, B.A., Coogan, T.P. & Waalkes, M.P. ( 2002 ) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proceedings of the National Academy of Sciences of the United States of America, 94, 10907 – 10912. Available from: https://doi.org/10.1073/pnas.94.20.10907
dc.identifier.citedreferenceAli, O. ( 2013 ) Genetics of type 2 diabetes. World Journal of Diabetes, 4 ( 4 ), 114 – 123. Available from: https://doi.org/10.4239/WJD.V4.I4.114
dc.identifier.citedreferenceArgos, M. ( 2015 ) Arsenic exposure and epigenetic alterations: recent findings based on the Illumina 450K DNA methylation Array. Current Environmental Health Reports, 2 ( 2 ), 137 – 144. Available from: https://doi.org/10.1007/S40572-015-0052-1
dc.identifier.citedreferenceBailey, K.A., Wu, M.C., Ward, W.O., Smeester, L., Rager, J.E., García-Vargas, G. et al. ( 2013 ) Arsenic and the epigenome: Interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. Journal of Biochemical and Molecular Toxicology, 27, 106 – 115. Available from: https://doi.org/10.1002/jbt.21462
dc.identifier.citedreferenceBonaventura, M.M., Bourguignon, N.S., Bizzozzero, M., Rodriguez, D., Ventura, C., Cocca, C. et al. ( 2017 ) Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring. Food and Chemical Toxicology, 100, 207 – 216. Available from: https://doi.org/10.1016/j.fct.2016.12.025
dc.identifier.citedreferenceCastriota, F., Acevedo, J., Ferreccio, C., Smith, A.H., Liaw, J., Smith, M.T. et al. ( 2018 ) Obesity and increased susceptibility to arsenic-related type 2 diabetes in Northern Chile. Environmental Research., 167, 248 – 254. Available from: https://doi.org/10.1016/j.envres.2018.07.022
dc.identifier.citedreferenceCavalcante, R.G. & Sartor, M.A. ( 2016 ) Annotatr: associating genomic regions with genomic annotations. BioRxiv, 1 – 9. Available from: https://doi.org/10.1101/039685
dc.identifier.citedreferenceCedar, H. & Bergman, Y. ( 2012 ) Programming of DNA methylation patterns. Annual Review of Biochemistry, 81, 97 – 117. Available from: https://doi.org/10.1146/annurev-biochem-052610-091920
dc.identifier.citedreferenceDerraik, J.G.B., Ahlsson, F., Diderholm, B. & Lundgren, M. ( 2015 ) Obesity rates in two generations of Swedish women entering pregnancy and associated obesity risk among adult daughters. Scientific Reports, 5 ( 1 ), 1 – 5. Available from: https://doi.org/10.1038/srep16692
dc.identifier.citedreferenceDitzel, E.J., Nguyen, T., Parker, P. & Camenisch, T.D. ( 2016 ) Effects of arsenite exposure during fetal development on energy metabolism and susceptibility to diet-induced fatty liver disease in male mice. Environmental Health Perspectives, 124 ( 2 ), 201 – 209. Available from: https://doi.org/10.1289/EHP.1409501
dc.identifier.citedreferenceFei, D.L., Koestler, D.C., Li, Z., Giambelli, C., Sanchez-Mejias, A., Gosse, J.A. et al. ( 2013 ) Association between in utero arsenic exposure, placental gene expression, and infant birth weight: a US birth cohort study. Environmental Health: A Global Access Science Source, 12, 58. Available from: https://doi.org/10.1186/1476-069X-12-58
dc.identifier.citedreferenceFeng, S., Jacobsen, S.E. & Reik, W. ( 2010 ) Epigenetic reprogramming in plant and animal development. Science, 330, 622 – 627. Available from: https://doi.org/10.1126/science.1190614
dc.identifier.citedreferenceGilbert-Diamond, D., Emond, J.A., Baker, E.R., Korrick, S.A. & Karagas, M.R. ( 2016 ) Relation between in utero arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environmental Health Perspectives, 124 ( 8 ), 1299 – 1307. Available from: https://doi.org/10.1289/EHP.1510065
dc.identifier.citedreferenceGliga, A.R., Engström, K., Kippler, M., Skröder, H., Ahmed, S., Vahter, M. et al. ( 2018 ) Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Archives of Toxicology, 92 ( 8 ), 2487 – 2500. Available from: https://doi.org/10.1007/S00204-018-2239-3
dc.identifier.citedreferenceGong, Y., Xue, Y., Li, X., Zhang, Z., Zhou, W., Marcolongo, P. et al. ( 2021 ) Inter- and transgenerational effects of paternal exposure to inorganic arsenic. Advanced Science, 8 ( 7 ), 2002715. Available from: https://doi.org/10.1002/ADVS.202002715
dc.identifier.citedreferenceHossain, K., Suzuki, T., Hasibuzzaman, M.M., Islam, M.S., Rahman, A., Paul, S.K. et al. ( 2017 ) Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environmental Health: A Global Access Science Source, 16, 20. Available from: https://doi.org/10.1186/s12940-017-0231-7
dc.identifier.citedreferenceHuang, M.C., Douillet, C., Dover, E.N. & Stýblo, M. ( 2018 ) Prenatal arsenic exposure and dietary folate and Methylcobalamin supplementation Alter the metabolic phenotype of C57BL/6J mice in a sex-specific manner. Archives of Toxicology, 92 ( 6 ), 1925 – 1937. Available from: https://doi.org/10.1007/S00204-018-2206-Z/FIGURES/7
dc.identifier.citedreferenceHughes, R.N. ( 2004 ) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neuroscience and Biobehavioral Reviews, 28 ( 5 ), 497 – 505. Available from: https://doi.org/10.1016/J.NEUBIOREV.2004.06.006
dc.identifier.citedreferenceKrueger, F. ( 2015 ) Trim Galore!: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Github: Babraham Institute. Available from: https://doi.org/10.1002/maco.200603986
dc.identifier.citedreferenceKrueger, F. & Andrews, S.R. ( 2011 ) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics, 27, 1571 – 1572. Available from: https://doi.org/10.1093/bioinformatics/btr167
dc.identifier.citedreferenceLaine, J.E., Bailey, K.A., Rubio-Andrade, M., Olshan, A.F., Smeester, L., Drobná, Z. et al. ( 2015 ) Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the biomarkers of exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environmental Health Perspectives, 123, 186 – 192. Available from: https://doi.org/10.1289/ehp.1307476
dc.identifier.citedreferenceLangmead, B. & Salzberg, S.L. ( 2012 ) Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357 – 359. Available from: https://doi.org/10.1038/nmeth.1923
dc.identifier.citedreferenceLiu, S., Guo, X., Bing, W., Haiyan, Y., Zhang, X. & Li, M. ( 2014 ) Arsenic induces diabetic effects through Beta-cell dysfunction and increased gluconeogenesis in mice. Scientific Reports, 4, 6894. Available from: https://doi.org/10.1038/srep06894
dc.identifier.citedreferenceLoos, R.J.F. & Yeo, G.S.H. ( 2021 ) The genetics of obesity: from discovery to biology. Nature Reviews Genetics, 23 ( 2 ), 120 – 133. Available from: https://doi.org/10.1038/s41576-021-00414-z
dc.identifier.citedreferenceMarie, C., Léger, S., Guttmann, A., Rivière, O., Marchiset, N., Lémery, D. et al. ( 2018 ) Exposure to arsenic in tap water and gestational diabetes: a French semi-ecological study. Environmental Research, 161, 248 – 255. Available from: https://doi.org/10.1016/j.envres.2017.11.016
dc.identifier.citedreferenceMartin, E.M., Stýblo, M. & Fry, R.C. ( 2017 ) Genetic and epigenetic mechanisms underlying arsenic-associated diabetes mellitus: a perspective of the current evidence. Epigenomics, 9, 701 – 710. Available from: https://doi.org/10.2217/epi-2016-0097
dc.identifier.citedreferenceNational Research Council (U.S.). Subcommittee on Arsenic in Drinking Water. 1999. Arsenic in drinking water. Geneva, Switzerland: National Academy Press. Available from: http://www.who.int/news-room/fact-sheets/detail/arsenic
dc.identifier.citedreferenceNava-Rivera, L.E., Betancourt-Martínez, N.D., Lozoya-Martínez, R., Carranza-Rosales, P., Guzmán-Delgado, N.E., Carranza-Torres, I.E. et al. ( 2021 ) Transgenerational effects in DNA methylation, Genotoxicity and reproductive phenotype by chronic arsenic exposure. Scientific Reports, 11 ( 1 ), 1 – 16. Available from: https://doi.org/10.1038/s41598-021-87677-y
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.